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Summary
This paper addresses the iterative learning control problem under random data

dropout environments. The recent progress on iterative learning control in the pres-

ence of data dropouts is first reviewed from 3 aspects, namely, data dropout model,

data dropout position, and convergence meaning. A general framework is then pro-

posed for the convergence analysis of all 3 kinds of data dropout models, namely,

the stochastic sequence model, the Bernoulli variable model, and the Markov chain

model. Both mean square and almost sure convergence of the input sequence to the

desired input are strictly established for noise-free systems and stochastic systems,

respectively, where the measurement output suffers from random data dropouts.

Illustrative simulations are provided to verify the theoretical results.
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1 INTRODUCTION

Iterative learning control (ILC) is a branch of intelligent control as it can improve tracking performance whenever a given

tracking task is completed repeatedly. In such a case, the tracking information and the corresponding input signal in previous

iterations/cycles/batches are used to construct the input signal for the current iteration/cycle/batch from which a learning mech-

anism is introduced to ensure asymptotical convergence along the iteration axis. As a consequence, ILC is much suitable for

systems that can complete a given task in a finite time interval and repeat it successively. Since its introduction in the work of

Arimoto et al1 in 1984 for robot control, ILC has gained a lot of developments both in theory and applications over the past

3 decades.2-4 Many related topics have been studied such as robust ILC,5 distributed ILC,6-8 monotonic convergence,9 interval

ILC,10 and initial resetting condition,11 among others.

As fast developments of communication and network techniques, many systems have adopted the networked control structure,

that is, the controller and the plant in such systems are separated in different sites and communicate with each other through

wired/wireless networks. For example, when considering an application of ILC to the robot fish in the laboratory,12 the control

algorithm is run on a computer, and the computer is communicated with the robot fish through a wireless network for data

and command transmission. Similar implementation goes to the unmanned aerial vehicle routine surveillance control, where

the control center for updating the control signals and the unmanned aerial vehicles for continuous cruising are separated and

communicate through wireless networks. Moreover, in the studies of distributed ILC,6-8,13 the communication of different agents

is also through wireless networks. Therefore, a natural and critical problem is the data dropout, which damages the tracking

performance. This problem motivates us to consider the design and analysis of ILC in the presence of random data dropouts.
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Some earlier attempts have been reported.14-27 In the next section, we will give a brief literature review of related studies on ILC

in the presence of data dropouts from 3 aspects, namely, data dropout model, data dropout position, and convergence meaning.

From the literature review, we have observed several facts: (1) most papers adopt the classic Bernoulli model for describing

data dropouts, (2) most papers assume that the data dropouts only occur at the measurement side, and (3) convergence meaning

is scattered in mathematical expectation, mean square, and almost sure senses in different papers.

In this paper, we propose a new analysis framework for the ILC problem under random data dropout environments. In this

framework, the random sequence model (RSM), the Bernoulli variable model (BVM), and the Markov chain model (MCM)

for data dropouts are all taken into consideration. Moreover, both mean square convergence and almost sure convergence of the

input sequence to the desired input are established, from which the convergence in mathematical expectation is a direct corollary.

Furthermore, although we restrict our discussions to the case that data dropouts occur at the measurement side, the extension

to the general case that data dropouts occur at both measurement and actuator sides is easy to establish without additional

limitations on the successive data dropouts. In addition, while we consider the classic P-type algorithm in this paper to clarify

our idea, the extensions to other types of ILC algorithms such as the PD type and the current-iteration-feedback-integrated type

can be derived following similar steps. We should point out that this paper focuses on control over networks, which is distinctly

different from papers concerning control of networks, such as those by Meng and Moore,7 Xiong et al,8 and Xiong et al.13 By

control over networks, we mean the control signal is transmitted through networks, whereas by control of networks, we mean the

control is constructed for a multiagent system (consisting of several agents or subsystems). Thus, the 2 problems have different

research concerns.

This paper is arranged as follows. Section 2 presents a brief literature review of the contributions on ILC in the presence of

data dropouts. Section 3 provides the problem formulation including system formulation, data dropout models, and the control

objective. The detailed convergence analysis under the new framework for linear systems without and with stochastic noise is

elaborated in Sections 4 and 5. Illustrative simulations are given in Section 6. Section 7 concludes this paper.

Notation. ℜ is the set of real numbers, and ℜn is the n-dimensional space. P(·) denotes the probability of its indicated event,

andE denotes the mathematical expectation of its indicated random variable. In denotes the unit matrix with dimension n×n.

The subscript n may be omitted where no confusion exists. 0m×n denotes the zero matrix with dimension m×n, and it is abbre-

viated as 0n when n = m. The superscript T is used to denote the transpose of a vector or a matrix. For a vector x, ||x||2 = xTx
denotes the Euclidean norm with ||x|| = √

xTx, and ||x||M = xTMx denotes a weighted norm with respect to a positive definite

matrix M.

2 LITERATURE REVIEW

In this section, we give a brief literature review on ILC for systems with random data dropouts and classify the contributions

of the existing papers from 3 aspects, namely, random data dropout models, data dropout positions, and convergence meaning.

From these 3 dimensions, we can get a comprehensive picture view of the state of the art.

2.1 Data dropout models
There are only 2 states describing the transmission: successful transmission and loss. Thus, if we introduce a random variable

to describe the data dropouts, it is a binary variable. Usually, we let the variable be 1 if the corresponding data packet is

successfully transmitted through the wired/wireless networks; we let the variable be 0 otherwise. Moreover, such variable is

inherently random, and thus, we should introduce some additional model for the binary variable to give a characterization of

the randomness of data dropouts.

The most popular model for the data dropout should go to the Bernoulli model. In this model, the random variable takes the

value of 1 with success probability p and the value of 0 with failure probability q = 1 − p. Moreover, the data dropouts for

different packets occur independently. In other words, this model has a clear probability distribution and good independence.

Therefore, it is widely used in many papers addressing the data dropout topic. Most ILC papers also adopted this model14-27

with/without extra requirements on data dropouts.

There are a few ILC papers dropping this model. Pan et al28 gave an elaborate investigation of the effect of data dropouts.

Thus, the authors mainly considered the case that only a single packet was lost during the transmission and provided a specific

derivation for the effect on the input error and tracking performance. As to the multiple-packet-loss case, a general discussion
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was given instead of strict analysis and description. Specifically, the authors claimed that the data dropout level should be far

smaller than 100% to ensure a satisfactory tracking performance.

The works of Shen and Wang29,30 provided a so-called RSM for data dropouts. Specifically, the sequence of the data dropout

variables along the iteration axis was not assumed to be with any specific probability distribution. In other words, the statistical

property of the data dropouts can vary along the iteration axis. Thus, the steady distribution in the Bernoulli model is removed.

However, to ensure asymptotical convergence of the input sequence, an additional requirement was imposed to the data dropout

model in the works of Shen and Wang29,30: that there should exist a sufficient large number K such that during any successive

K iterations, at least one data dropout variable takes the value of 1. In other words, the data should be successfully transmitted

from time to time.

There is another model for data dropouts, ie, the MCM, which has been used in some papers addressing other control strategies.

In this model, the data dropouts have some dependence on the previous event. That is, the loss or not of the current packet would

affect the probability of successful transmission for the next packet. In the ILC under data dropouts, this model has not been

discussed.

2.2 Data dropout positions
In the networked ILC, the plant and the learning controller are separated in different sites and communicate with each

other through wired/wireless networks. Thus, there are 2 channels connecting the plant and the learning controller. One

channel is at the measurement side to transmit the measured output information back to the learning controller. The

other channel is at the actuator side to transmit the generated input signal to the plant so that the operation process can

continuously run.

When considering the data dropout problem for ILC, the position at which data dropout occurs is usually assumed to

be the measurement side. In other words, only the network at the measurement side is assumed to be lossy, and the net-

work at the actuator side is assumed to work well in most papers.14-17,19,20,23-26,29,30 In these papers, the generated input signal

can be always sent to the plant without any loss. Although some papers claimed that their results can be extended to the

general case where the networks at the measurement and actuator sides suffered random data dropouts, it is actually not a

trivial extension.

Specifically, when the network at the measurement side suffers random data dropouts, the output signal of the plant may

or may not be successfully transmitted. One simple mechanism for treating the measured data is as follows: if the measured

output is successfully transmitted, then the learning controller would employ such information for updating; if the measured

output is lost during transmission, then the learning controller would stop updating until the corresponding output information

is successfully transmitted. One may find that the lost data are simply replaced by 0 in this mechanism. For the case that

data dropout occurs only at the measurement side, such simple mechanism is sufficient to ensure the learning process as long

as the network is not completely broken down. However, when considering the data dropout at the actuator side, it is clear

that the lost input signal cannot be simply replaced by 0 as it would greatly damage the tracking performance. That is, if

the network at the actuator side suffers data dropouts, the lost input signal must be compensated with a suitable packet to

maintain the operation process of the plant. This observation motivates the investigation on compensation mechanisms for the

lost data.18,21,22,28

Pan et al28 gave an earlier attempt on compensating the lost data. When 1 packet of the input signal is lost at the actuator side,

the one-time-instant ahead input signal is applied to compensate for the lost one. That is, if the input at time instant t is lost, it

would be compensated with the input at time instant t− 1. When 1 packet of the output signal is lost at the measurement side, a

similar compensation mechanism is applied. It is worth noting that the data dropouts at the measurement side and the actuator

side are separately discussed in the work of Pan et al.28 Moreover, this mechanism was then adopted by Bu et al18 for a Bernoulli

model of random data dropouts occurring at both the measurement and actuator sides simultaneously. We should emphasize

that, as a natural consequence, the data at adjacent time instants at the same iteration cannot be dropped simultaneously due

to the inherent compensation requirement. Another compensation mechanism is to apply the corresponding data from the last

iteration as shown in the works of Huang and Fang21 and Liu and Ruan.22 That is, if the data packet at the kth iteration is lost

during transmission, it is compensated with the packet at the (k − 1)th iteration with the same time instant label. In such an

assumption, the successive data dropouts along the time axis are allowed; however, it restricts that there was no simultaneous

data dropout at the same time instant across any 2 adjacent iterations. In other words, no successive data dropouts along the

iteration axis are allowed.
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In short, the contributions in the aforementioned works18,21,22,28 show that the newly introduced compensation mechanisms

impose additional limitations to the data dropout models. In fact, the inherent difficulty of convergence analysis lies in the

asynchronism between the computed input of the learning controller and the actual input fed to the plant. A recent paper27

solved this problem according to the Bernoulli model allowing successive data dropouts along both time and iteration axes and

provided a simple compensation mechanism with the iteration-latest available packet.

2.3 Convergence meaning
In this subsection, we review the analysis techniques and the related convergence results, particularly the convergence meaning

in considering the randomness of data dropouts apart from optional stochastic noise.

Ahn et al provided earlier attempts on ILC for linear systems in the presence of data dropouts.14-16 The Kalman filtering–based

technique, which was first proposed by Saab,31 was applied, and thus, the mean square convergence of the input sequence was

obtained. The main difference among the aforementioned papers14-16 lies in the position where data dropouts occur. Specifically,

in the first paper,14 the output vector was assumed to be lossy; in the second paper,15 this assumption was relaxed to the case

where only partial dimensions of the output may suffer data dropouts; and in the third paper,16 the data dropouts at both the

measurement and actuator sides were taken into account. In short, the Kalman filtering–based technique was deeply investigated

in the series of works by Ahn et al.

Bu et al17-20 gave different angles to solve this problem. In the first paper,17 the exponential stable result of asynchronous

dynamical systems49 was referred to establish the convergence condition of ILC under data dropouts. As a result, the randomness

of data dropouts was not involved in the analysis steps. In the second paper,18 such randomness was eliminated from the recursion

by taking mathematical expectation; thus, the algorithm was converted into a deterministic type, and then, the design and analysis

of the convergence followed the conventional way. Therefore, the convergence was clearly in the mathematical expectation

sense. In the third paper,19 a new H-∞ framework was defined along the iteration axis, and then, the related control problem

was solved in the newly defined framework. That is, the kernel objective was to satisfy an H-∞ performance index in the mean

square sense. A linear matrix inequality design condition for the learning gain matrix was also provided. In the fourth paper,20

the widely used 2-dimensional system approach was revisited to deal with data dropouts. A mean square asymptotically stable

result was obtained, and the design condition for the learning gain matrix was solved through linear matrix inequality techniques.

In short, the evolution dynamics along the iteration axis was carefully studied, and related techniques are applied for the design

and analysis of ILC.

There are some other scattered results on this topic.21-23,28 Pan et al28 proposed a detailed analysis of the effect of packet loss

for the sampled ILC. Specifically, a single packet loss at the measurement side and the actuator side was evaluated separately

to study the inherent influence of data dropout on the tracking performance. In other words, a deterministic analysis was given

according to the input error. The results in the work of Pan et al28 revealed that neither contraction nor expansion occurred for

the input error if the corresponding packet was lost during transmission. Such a technique was further exploited and used in the

work of Huang and Fang21 to study the general data dropout case. In the work of Liu and Ruan,22 a mathematical expectation was

taken to the recursive inequality of input error to eliminate the randomness of data dropouts similar to the work of Bu et al,18 and

then, the conventional contraction mapping method was used to derive the convergence results. Moreover, to construct explicit

contraction mapping, the conditions in the work of Liu and Ruan22 were much conservative, and it may be further relaxed.

Similar techniques were also used in the work of Liu and Xu,23 an incorporation with the conventional α-norm technique to

derive convergence in the mathematical expectation sense.

Shen et al mainly contributed the almost sure convergence results of ILC under data dropout environments. In the work of Shen

and Wang,24 a simple case that the whole iteration was packed and transmitted as a single packet was investigated by a switched

system approach. Specifically, the evolution along the iteration axis was formulated as a switched system, and the statistical

properties were recursively computed. Then, the convergence in the sense of expectation, mean square, and almost sure was

established in turn. In the work of Shen and Wang,29 based on stochastic approximation theory, the almost sure convergence of

the input sequence was proved for the case that the data dropouts were modeled by an RSM. This result was then extended to

the unknown control direction case in the work of Shen and Wang.30 For the traditional Bernoulli model of data dropouts, the

essential difficulty in obtaining the almost sure convergence lies in the random successive data dropouts along the iteration axis.

This problem was solved in the works of Shen et al25,26 for linear and nonlinear stochastic systems, respectively. The authors of

these papers proceeded to investigate the general data dropouts at both measurement and actuator sides without any additional

requirements but the Bernoulli assumption in the work of Shen and Xu.27 When data dropouts occur at the actuator sides, there

is a newly introduced asynchronism between the computed control generated by the learning controller and the actual control
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TABLE 1 Classification of the papers on iterative learning control under data dropouts

Refs Model Position Convergence
RSM BVM MCM Measurement Actuator ME MS AS DA

Ahn et al14
√ √ √

Ahn et al15
√ √ √

Ahn et al16
√ √ √ √

Bu et al20
√ √ √

Bu and Hou17
√ √ √

Bu et al18
√ √ √ √

Bu et al19
√ √ √

Huang and Fang21
√ √ √ √

Liu and Ruan22
√ √ √ √

Liu and Xu23
√ √ √

Pan et al28
√ √ √ √

Shen and Wang24
√ √ √ √ √

Shen and Wang29
√ √ √

Shen and Wang30
√ √ √

Shen and Xu27
√ √ √ √ √

Shen et al25
√ √ √

Shen et al26
√ √ √

Abbreviations: AS, almost sure; BVM, Bernoulli variable model; DA, deterministic analysis; MCM, Markov chain model; ME, mathematical expectation;

MS, mean square; RSM, random sequence model.

fed to the plant. Such asynchronism was characterized by a Markov chain in the aforementioned work,27 and then, the mean

square and almost sure convergence was established.

2.4 Further remarks
The recent progress on ILC in the presence of data dropouts is classified in Table 1 according to the data dropout model, data

dropout position, and convergence meaning. From this Table, we have observed several points.

• In most papers, the data dropout is modeled by the Bernoulli random variable, while the results according to the RSM are

rather limited. Moreover, for the MCM, no result has been reported.

• All the papers consider the data dropout occurring at the measurement side, and only a few papers address the case at the

actuator side. As we have previously explained, the latter case would involve an essential influence on the controller design

and convergence analysis.

• The convergence meaning is scattered in different papers. Mean square and almost sure convergence implies the convergence

in the mathematical expectation sense. However, they cannot imply each other according to the probability theory. Thus, it

is of interest to propose an in-depth framework for the design and analysis of ILC in both senses simultaneously.

Based on this progress, we will propose a comprehensive framework for the convergence analysis of ILC under various data

dropout models. In contrast to the current status, we have the following highlights. First of all, the new framework is applicable

to all the proposed models of data dropouts, and thus, the blank for the MCM is filled (differing from almost all relevant papers).

Moreover, our method can be extended to the actuator-side case without imposing further restrictions on the successive data

dropouts (differing from the one-side data dropout papers17,19,20,25,26,29,30 and restricted two-side data dropout papers18,21,22,28).

Furthermore, we will reveal the essential connection between the convergence results in the mean square and almost sure sense

and then establish the convergence results for both noise-free and noised systems, respectively (differing from the mathematical

expectation–based convergence papers17-20). In short, the ILC problem under data dropouts is deeply discussed and resolved in

this paper.
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3 PROBLEM FORMULATION

In this section, we will formulate the system, models for data dropouts, and the control objective in turn.

3.1 System formulation
Consider the following linear time-varying system:

xk(t + 1) = Atxk(t) + Btuk(t) + wk(t + 1),
yk(t) = Ctxk(t) + vk(t), (1)

where k is the iteration number, k = 1, 2, · · ·, t is the time instant, t = 0, 1, · · · ,N, and N is the iteration length. The variables

xk(t) ∈ ℜn, uk(t) ∈ ℜp, and yk(t) ∈ ℜq are the system state, input, and output, respectively. The notations wk(t) ∈ ℜn and

vk(t) ∈ ℜq are the system and measurement noise, respectively. In addition, At, Bt, and Ct are system matrices with appropriate

dimensions.

If the stochastic noise values wk(t) and vk(t) are absent, ie, wk(t) = vk(t) = 0, ∀k, t, we term the system a noise-free system.

Otherwise, if variables wk(t) and vk(t) are described by random variables, we term the system a stochastic system.

In this paper, we assume that the system relative degree is τ, τ ≥ 1, that is, for any t ≥ τ, we have

CtAt−1
t+1−iBt−i = 0, 1 ≤ i ≤ τ − 1, (2)

CtAt−1
t+1−τBt−τ ≠ 0, (3)

where Aj
i ≜ AjAj−1· · ·Ai, j ≥ i, and Ai

i+1
≜ In.

Remark 1. The relative degree implies the smallest structure delay of the input effect on its corresponding output. For

example, if the relative degree τ = 1, the input at time instant t would have an effect on the output at time instant t + 1 but

no effect on the output at time instant t. The relative degree is an intrinsic property of the system and, thus, is usually time

invariant. Moreover, assuming the relative degree to be τ and starting the operation from the time instant t = 0, we find

that the first controllable output appears at time instant t = τ, which is driven by uk(0). In other words, the outputs at time

t = 0 up to t = τ − 1 are uncontrollable in such a situation. As a consequence, these outputs would be formulated in the

initialization condition. In addition, considering the MIMO system formulation, the relative degree may vary for different

dimensions of the output vector, that is, different dimensions of the output vector have different relative degree values. It is

straightforward to extend the following derivations to this case. Therefore, we omit the tedious extensions to make a concise

layout.

Denote the desired reference as yd(t), t ∈ {0, 1, … ,N}. Without loss of generality, we assume that the reference is achievable,

that is, with a suitable initial value of xd(0), there exists a unique input ud(t) such that

xd(t + 1) = Atxd(t) + Btud(t),
yd(t) = Ctxd(t). (4)

Denote the tracking error as ek(t) ≜ yd(t) − yk(t), t ∈ {0, 1, … ,N}.

Remark 2. Note that the system relative degree is τ, implying that the output at time instant t = 0 up to t = τ − 1 cannot be

affected by the input. Therefore, the actual tracking reference is yd(t), τ ≤ t ≤ N, whereas the initial τ outputs from t = 0 up

to τ − 1 are regulated by the initialization condition. Moreover, the uniqueness of the desired input ud(t) can be guaranteed

if the matrix CtAt−1
t+1−τBt−τ is of full-column rank. That is, the input ud(t) can be recursively computed from the nominal

model (4) for t ≥ τ as follows:

ud(t − τ) =
[(

CtAt−1
t+1−τBt−τ

)T (CtAt−1
t+1−τBt−τ

)]−1(
CtAt−1

t+1−τBt−τ
)T ×

(
yd(t) − CtAt−1

t−τxd(t − τ)
)
. (5)

The special case of Equation 5, with τ being 1, has been explicitly given in many existing papers.31,32 It should be emphasized

that the full-column rank requirement is not strict as it has been proved necessary for perfect tracking.33,34 As a consequence,

formulation (4) is a mild assumption for the system, which has been used in many existing ILC papers. When the coupling

matrix is of full-row rank rather than full-column rank, which usually implies that the dimension of the input is greater

than that of the output, it is found that only the asymptotical convergence of the tracking error is ensured in many papers
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(see, eg, the work of Saab35). Moreover, recent papers36,37 have extended the rank conditions of coupling matrices from an

iteration-invariant case to an iteration-varying case, which is a promising issue in handling nonrepetitive uncertainties.

The following mild assumptions are given for system (1).

Assumption 1. The system initial value satisfies that xk(0) = xd(0), where xd(0) is consistent with the desired reference

yd(0) in the sense that yd(0) = C0xd(0).

Remark 3. This initialization condition is critical for ensuring the accurate tracking performance of the whole iteration and,

thus, is an important issue in the ILC field. Assumption 1 is the well-known identical initialization condition. This condi-

tion is a basic requirement for time and space resetting of the system operation and, thus, is widely used in most ILC papers.

Moreover, many scholars have contributed to relaxing this condition by introducing initial rectifying or learning mecha-

nisms; however, either additional system information or tracking information is required when using the initial learning

mechanisms.38,39 Note that the focus of this paper is in proposing the comprehensive analysis of ILC under data dropout

environments; thus, we use Assumption 1 to make the paper concentrated.

Define the σ-algebra k = σ
(
xi(t), ui(t), yi(t),wi(t), vi(t), 1 ≤ i ≤ k, 0 ≤ t ≤ N

)
(ie, the set of all events induced by these

random variables) for k ≥ 1.

Assumption 2. The stochastic noise variables {wk(t)} and {vk(t)} are martingale difference sequences along the iteration

axis with finite conditional second moments. That is, for t ∈ {0, 1, · · · ,N},E{wk+1(t)|k} = 0, supkE{||wk+1(t)||2|k} < ∞,

E{vk+1(t)|k} = 0, supkE{||vk+1(t)||2|k} < ∞.

Remark 4. The system for which the ILC method is applicable should be repeated so that the tracking performance can be

gradually improved along the iteration axis. Consequently, the stochastic noise variables are usually independent along the

iteration axis, from which Assumption 2 is mild and widely satisfied in practical applications. It is evident that the classical

zero-mean white noise satisfies this assumption.

To facilitate the analysis in the following sections, we give the lifting forms of system (1). To this end, define the super-vectors

as follows:

Uk =
[
uT

k (0), u
T
k (1), · · · , u

T
k (N − τ)

]T
, (6)

Yk =
[
yT

k (τ), y
T
k (τ + 1), · · · , yT

k (N)
]T
. (7)

Similarly, Ud and Yd can be defined by replacing the subscript k in the above equations with d. The associated transfer matrix

H can be formulated as

H =
⎡⎢⎢⎢⎣

CτAτ−1
1

B0 0q×p · · · 0q×p
Cτ+1Aτ

1
B0 Cτ+1Aτ

2
B1 · · · 0q×p

⋮ ⋮ ⋱ ⋮
CNAN−1

1
B0 CNAN−1

2
B1 · · · CNAN−1

N−τ+1
BN−τ

⎤⎥⎥⎥⎦ . (8)

Therefore, we have the following relationship between the input and the output:

Yk = HUk + Mxk(0) + ξk (9)

and

Yd = HUd + Mxd(0), (10)

where M = [(CτAτ−1
0

)T , · · · , (CNAN−1
0

)T ]T , and

ξk =
⎡⎢⎢⎣
( τ∑

i=1

CτAτ−1
i wk(i) + vk(τ)

)T

,

(τ+1∑
i=1

Cτ+1Aτ
i wk(i) + vk(τ + 1)

)T

, · · · ,

( N∑
i=1

CNAN−1
i wk(i) + vk(N)

)T⎤⎥⎥⎦
T

. (11)

Recalling the tracking error ek(t) = yd(t) − yk(t), we denote the lifted tracking error Ek ≜ Yd − Yk. Then, it is evident that

Ek = Yd − Yk = H(Ud − Uk) − ξk, (12)

where Assumption 1 is applied. These formulations will be used in the convergence analysis only.
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FIGURE 1 Block diagram of the networked iterative learning control [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Models for data dropouts
In this subsection, we give the 3 common models of data dropouts and detail the differences among the models. Prior to the

formulation, we first present the networked structure of ILC.

The block diagram of the networked ILC considered in this paper is given in Figure 1, in which, without loss of generality,

only the network at the measurement side is assumed to be lossy, whereas the network at the actuator side is assumed to work

well. The extension to the case that the networks at both sides suffer from the data dropout problem can be derived following

the similar steps in this paper (cf Remark 10). Therefore, to make our idea easy to follow, we restrict our discussions to the

one-side data dropout case.

The data dropout occurring or not, which could be regarded as a switch that opens and closes the network in a random

manner, is denoted by a random variable γk(t). Therefore, there are 2 possible states of the variable γk(t). Specifically, we let

γk(t) be equal to 1 if the corresponding tracking error yk(t) is successfully transmitted and to 0 otherwise. In this paper, without

loss of generality, the information for each time instant is packed as a data packet and transmitted, that is, yk(t) also denotes an

individual data packet containing the output information at time instant t for the kth iteration.

In this paper, we consider the following 3 most common models of data dropouts.

• Random sequence model (RSM): For each t, the measurement packet loss is random without obeying any certain probability

distribution, but there is a positive integer K ≥ 1 such that, at least in 1 iteration, the measurement is successfully sent back

during the successive K iterations.

• Bernoulli variable model (BVM): The random variable γk(t) is independent for different values of time instant t and iteration

number k. Moreover, γk(t) obeys a Bernoulli distribution with

P(γk(t) = 1) = γ̄, P(γk(t) = 0) = 1 − γ̄, (13)

where γ̄ = Eγk(t) with 0 < γ̄ < 1.

• Markov chain model (MCM): The random variable γk(t) is independent for different values of time instant t. Moreover,

for each t, the evolution of γk(t) along the iteration axis follows a 2-state Markov chain, of which the probability transition

matrix is

P =
[

P11 P10

P01 P00

]
=
[

μ 1 − μ
1 − ν ν

]
(14)

with 0 < μ, ν < 1, where P11 = P(γk+1(t) = 1|γk(t) = 1), P10 = P(γk+1(t) = 0|γk(t) = 1), P01 = P(γk+1(t) = 1|γk(t) = 0),
and P00 = P(γk+1(t) = 0|γk(t) = 0).

Remark 5. The RSM is illustrated in Figure 2 where a horizontal bar denotes an iteration process. In any bar, the white

rectangle and the black rectangle denote the lost packet and the successfully transmitted packet, respectively. The gray part

of each horizontal bar denotes the omission part. The RSM implies that, for an arbitrary time instant t, the corresponding

output information can be received at least once for any successive K iterations. As shown in Figure 2, taking the time

instant t = 4 for example, there is at least 1 black rectangle for any successive K horizontal bars. Moreover, this model can

be formulated using the random variable γk(t) as follows: for each t,
∑K−1

i=0 γk+i(t) ≥ 1 for all k ≥ 1. It is worth pointing out

that we only require the existence of the number K rather than its specific value, that is, the number K is not necessary to

be known prior, and it is not involved in the design of the ILC update law later. In fact, this model means that the output

information should not be lost too much to ensure the learning ability in a somewhat deterministic point of view.

Remark 6. The number K of the RSM indicates that the maximum length of successive data dropouts is K − 1. Thus, the

case K = 1 means no data dropout occurring, whereas the case K = 2 means no successive data dropout occurring for any

wileyonlinelibrary.com
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FIGURE 2 Illustration of the random sequence model

2 subsequent iterations. Moreover, the value of the successive iteration number K is a reflection of the rate of data dropouts.

However, it is not equivalent to the data dropout rate (DDR), which can be formulated as limn→∞1∕n×
[∑n

k=1

(
1 − γk(t)

)]
. In

fact, DDR denotes the average level of data dropouts along the iteration axis, whereas K implies the worst case of successive

data dropouts. In other words, a larger K value usually corresponds to a higher DDR, whereas a smaller K value usually

corresponds to a lower DDR. However, the connection between K and DDR need not necessarily be positively related.

Remark 7. The mathematical expectation γ̄ of the BVM is closely related to the DDR in light of the law of large numbers,

that is, DDR is equal to 1 − γ̄. Specifically, the data dropout is independent along the iteration axis; thus, limn→∞1∕n ×[∑n
k=1

(
1 − γk(t)

)]
= 1−Eγk(t) = 1−γ̄. If γ̄ = 0, implying that the network is completely broken down, then no information

can be received from the plant, and thus, no algorithm can be applied to improve the tracking performance. If γ̄ = 1,

implying that no data dropout occurs, then the framework converts into the classical ILC problem. In this paper, with a

framework for designing and analyzing the ILC update law under data dropouts, we simply assume 0 < γ̄ < 1. Moreover,

the statistics property of γk(t) is assumed to be identical for different time instants for a concise expression. The extension

to the time-dependent case, ie, the case that Eγk(t) = γ̄t, is straightforward without additional efforts.

Remark 8. The MCM is general for modeling the data dropouts. The transition probabilities μ and ν denote the average

level of retaining the same state for successful transmission and loss, respectively. If μ+ν = 1, then the MCM converts into

the BVM. That is, the BVM is a special case of the MCM. It is worth pointing out that all 3 models are widely investigated

in the field of networked control systems, such as in the works of Lin and Antsaklis40 for the RSM, Sinopoli et al41 for the

BVM, and Shi and Yu42 for the MCM.

Remark 9. In this remark, we comment the differences among the 3 models. The RSM differs from both the BVM and

the MCM as it requires no probability distribution or statistics property of the random variable γk(t). However, the RSM

pays the price that the successive data dropout length is bounded, compared with BVM and MCM. Specifically, both BVM

and MCM admit arbitrary successive data dropouts associated with a suitable occurring probability. Consequently, the

RSM cannot cover BVM/MCM, and vice versa. It should be pointed out that the RSM implies that the data dropout is not

totally stochastic. Moreover, the difference between the BVM and the MCM lies in the point that the data dropout occurs

independently along the iteration axis for the BVM, while dependently for the MCM. The independence of data dropout

admits some specific computations such as mean and variance (compare with the work of Shen et al43) and then derives the

convergence analysis. Such a technique is not applicable for the MCM.

Remark 10. When the network at the actuator side is lossy, a simple updating mechanism for the input fed to the plant is

the holding strategy. That is, if the newly generated input signal is successfully transmitted, the input fed to the plant is

updated; if the newly generated input signal is lost during transmission, the input fed to the plant retains the last available

value. Using this updating mechanism, the following convergence analysis can be extended to the general data dropout case.

Specifically, when data dropout occurring at the actuator side, it is seen that the input signal generated by the controller and

the one fed to the plant are not always identical. Such asynchronism between the 2 input signals can be analyzed following

similar steps as in the work of Shen and Xu27 and shown to be bounded (for the RSM model) or Markovian (for BVM and

MCM models). Thus, the analysis techniques proposed in this paper can be applied.
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3.3 Control objective
The conventional control objective of ILC for a noise-free system is to construct an update law such that the generated input

sequence can guarantee the asymptotical precise tracking to the desired reference, that is, the output yk(t) can track the given

trajectory yd(t) asymptotically for the specified time instants. However, when dealing with stochastic systems, it is impossible

to achieve this control objective because of the existence of the unpredictable stochastic noise variables wk(t) and vk(t). That is,

we cannot expect that yk(t) → yd(t), ∀t, for stochastic systems, as the iterations increase to infinity. Note that the stochastic noise

variables cannot be eliminated by any algorithm in advance; thus, the best achievable control objective should ensure that the

desired reference can be precisely tracked by the output with removing these stochastic noise variables. To this end, the control

objective in this paper is to design an ILC algorithm guaranteeing the precise tracking of the input rather than the output, that

is, uk(t) → ud(t) as k → ∞, t = 0, · · · ,N − τ. In fact, if we can guarantee that uk(t) → ud(t), then the following averaged index

of tracking errors is minimized:

Vt = lim sup
n→∞

1

n

n∑
k=1

||ek(t)||2 = lim sup
n→∞

1

n

n∑
k=1

||yd(t) − yk(t)||2, t ≥ τ.

In addition, if the stochastic noise variables are absent, then the precise convergence of the input guarantees the precise

convergence of the output.

Moreover, when considering the stochastic systems, it is clear that all the inputs, states, and outputs are random variables.

Even if the stochastic noise variables are removed, the random data dropouts also result in that the inputs, states, and outputs are

random variables. Therefore, we should clarify the convergence meaning from the viewpoint of probability theory. Specifically,

we have the following 3 types of convergence.

• Convergence in mathematical expectation: the input sequence {uk(t)} is called to achieve convergence in mathematical

expectation if limk→∞Euk(t) = ud(t) for t = 0, · · · ,N − τ.

• Mean square convergence: the input sequence {uk(t)} is called to achieve mean square convergence if limk→∞E||uk(t) −
ud(t)||2 = 0 for t = 0, · · · ,N − τ.

• Almost sure convergence: the input sequence {uk(t)} is called to achieve almost sure convergence if limk→∞uk(t) = ud(t)
with probability 1 for t = 0, · · · ,N − τ.

As is well known, both mean square convergence and almost sure convergence imply the convergence in the mathematical

expectation sense. Thus, if we establish either mean square convergence or almost sure convergence, then the convergence in

mathematical expectation is a direct corollary. However, mean square convergence and almost sure convergence cannot imply

each other generally. Therefore, in the rest of this paper, our analysis objective is to show the mean square convergence and

almost sure convergence of the proposed ILC algorithms under all 3 data dropout models.

3.4 Preliminaries
Lemma 1. Let {ϑk} be a sequence of positive real numbers and such that

ϑk+1 ≤ (1 − d1ak)ϑk + d2a2
k(d3 + ϑk), (15)

where di > 0, i = 1, · · · , 3, are constants, and ak satisfies ak > 0,
∑∞

k=1 ak = ∞, and
∑∞

k=1 a2
k < ∞, then limk→∞ϑk = 0.27

The proof of this lemma is put in the Appendix for smooth readability.

Lemma 2. Let X(n) and Z(n) be nonnegative stochastic processes (with finite expectation) adapted to increasing σ-algebra
{n} and such that

E{X(n + 1)|n} ≤ X(n) + Z(n), (16)

∞∑
n=1

E[Z(n)] < ∞. (17)

Then, X(n) converges almost surely, as n → ∞.44
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4 CONVERGENCE OF THE NOISE-FREE LINEAR SYSTEM

In this section, we consider the case that the stochastic noise variables are absent in Equation 1, that is, we consider the noise-free

system, ie,

xk(t + 1) = Atxk(t) + Btuk(t),
yk(t) = Ctxk(t). (18)

For such a system, the randomness is only resulted from the data dropouts, which provides us a concise view to address the

influences of data dropouts and stochastic noise.

The P-type ILC update law is designed as follows:

uk+1(t) = uk(t) + σγk(t + τ)Ltek(t + τ), (19)

for t = 0, … ,N−τ, where σ is a positive constant to be specified later, and Lt ∈ ℜp×q is the learning gain matrix for regulating

the control direction.

Remark 11. First, we emphasize again that the ILC update law is not limited to the classical P-type law, although we mainly

focus on such type in this paper to make a concise expression. Second, it is evident that the design of the positive constant

σ can be blended into the design of Lt. However, here, we provide the separated design procedure to elaborate on a clear

design principle in the following analysis of this section as well as to provide a comparison with the design for the stochastic

system case in the next section.

Now, lift the input along the time axis as in Equation 6. The update law (19) can be rewritten as follows:

Uk+1 = Uk + σΓkLEk, (20)

where Ek = Yd − Yk, defined as in Equation 12 with ξk = 0, is the stacked vector of the tracking errors for t = τ, · · · ,N, and Γk
and L are defined by

Γk =
⎡⎢⎢⎢⎣
γk(τ)Iq

γk(τ + 1)Iq
· · ·

γk(N)Iq

⎤⎥⎥⎥⎦ , (21)

L =
⎡⎢⎢⎢⎣

L0

L1

· · ·
LN−τ

⎤⎥⎥⎥⎦ . (22)

Clearly, Γk = diag{γk(τ), γk(τ + 1), · · · , γk(N)}⊗ Iq.

Recalling that Ek = H(Ud − Uk) and substituting this into Equation 20, we have

Uk+1 = Uk + σΓkLH(Ud − Uk). (23)

We define Λk ≜ ΓkLH and

LH =

⎡⎢⎢⎢⎢⎣
L0CτAτ−1

1
B0 0p · · · 0p

L1Cτ+1Aτ
1
B0 L1Cτ+1Aτ

2
B1 · · · 0p

⋮ ⋮ ⋱ ⋮
LN−τCNAN−1

1
B0 LN−τCNAN−1

2
B1 · · · LN−τCNAN−1

N−τ+1
BN−τ

⎤⎥⎥⎥⎥⎦
. (24)

Since LH is a block lower triangular matrix, it is clear that the eigenvalue set of LH is a combination of the eigenvalue sets of

LtCt+τAt+τ−1
t+1

Bt, t = 0, · · · ,N − τ. Moreover, Γk is a block diagonal matrix; thus, Λk = ΓkLH is also a block lower triangular

matrix with all eigenvalues being the eigenvalues of its diagonal blocks. Specifically, the eigenvalue of Λk is either equal to the

eigenvalue of LH or equal to zero, depending on whether the corresponding variable γk(t) is 1 or 0, respectively.

Note that each γk(t) has 2 possible values, ie, 1 or 0, corresponding to that the data are successfully transmitted or not; thus,

Γk has κ ≜ 2N+1−τ possible outcomes due to the independence of γk(t) for different time instants. As a consequence, the newly

defined Λk = ΓkLH also has κ possible outcomes. Denote the set of all possible outcomes as 𝔖 = {Λ(1), · · · ,Λ(κ)}. Without

loss of generality, we denote Λ(1) = LH and Λ(κ) = 0(N+1−τ)p, corresponding to the cases that all γk(t) are equal to 1 and 0,

respectively. The other 𝜅 − 2 alternatives are also block lower triangular matrices similar to LH but with one or more block

rows of LH that are zero rows, corresponding to the time instants at which the packets are lost during transmission. In other
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words, for a matrix Λk, if the data packet at time instant t is lost during transmission, t ≥ τ, then the (t + 1 − τ)th block row of

Λk is a zero block row.

Now, we give the design condition of the learning gain matrix Lt, 0 ≤ t ≤ N − τ.

Learning gain matrix condition: In order to ensure the convergence of the P-type update law (19), the learning gain matrix

Lt should satisfy that −LtCt+τAt+τ−1
t+1

Bt is a Hurwitz matrix, where a square matrix M is called Hurwitz if all the eigenvalues of

M are with negative real parts.

Recalling the formulation of LH in Equation 24, we have that all eigenvalues of −LH are with negative real parts if

−LtCt+τAt+τ−1
t+1

Bt is a Hurwitz matrix for t = 0, · · · ,N − τ. By the Lyapunov theorem, for any negative definite matrix S with

appropriate dimension, there is a positive definite matrix Q such that −((LH)TQ+QLH) = S. In the following, to facilitate the

analysis, we let S = −I. That is, there exists a positive matrix Q such that

(LH)TQ + QLH = I. (25)

Noting the difference between Λ(i) and LH, we have(
Λ(i))TQ + QΛ(i) ≥ 0, (26)

for i = 2, · · · , κ − 1.

Define δUk ≜ Ud − Uk. Subtracting both sides of Equation 23 from Ud yields

δUk+1 =
(
I(N+1−τ)p − σΛk

)
δUk. (27)

In the following subsections, we will give the zero-error convergence proofs of Equation 27 for 3 models in turn. To show the

convergence, it is sufficient to establish the inherent contraction mapping of I(N+1−τ)p − σΛk, in which Λk is a random matrix.

For the RSM, the contraction cannot hold for each iteration, and thus, a technical lemma is first provided to obtain the joint

contraction along the iteration axis. For the BVM and the MCM, the contraction is verified for each iteration based on the

probability properties of the statistic models.

4.1 RSM case
When considering the RSM case, no statistical property of the data dropout can be accessed and used; however, the

bounded-length assumption of successive data dropouts ensures a somewhat deterministic way for convergence analysis.

To make a clear insight of the influence of the RSM case of data dropouts, we rewrite Equation 27 as follows:

δUk+K =
(
I − σΛk+K−1

)
· · ·

(
I − σΛk

)
δUk. (28)

Denote

Φm,n =
(
I − σΛm

)
· · ·

(
I − σΛn

)
, m ≥ n. (29)

Now, we give an estimate of Φk+K−1,k in the following lemma.

Lemma 3. Consider the matrix product (29). If the learning matrix Lt satisfies that −LtCt+τAt+τ−1
t+1

Bt is a Hurwitz matrix
and σ is small enough, then there exists a positive definite matrix Q such that

ΦT
k+K−1,kQΦk+K−1,k ≤ ηQ, 0 < η < 1, ∀k. (30)

Proof. As previously explained, all Λk are block lower triangular matrices; thus, the summation of Λk is also a block lower

triangular matrix. In other words,
∑K−1

i=0 Λk+i is a block lower triangular matrix. Moreover, the RSM assumption of data

dropouts implies that all the diagonal blocks of
∑K−1

i=0 Λk+i are with positive real parts in their eigenvalues for k ≥ 0, which

further implies that there exists some positive constant c1 > 0 such that(K−1∑
i=0

Λk+i

)T

Q + Q

(K−1∑
i=0

Λk+i

)
≥ c1I, ∀k ≥ 0. (31)
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Now, revisit the recursion of Φk+K−1,k, and we have

ΦT
k+K−1,kQΦk+K−1,k =

(
I − σΛT

k
)
· · ·

(
I − σΛT

k+K−1

)
Q
(
I − σΛk+K−1

)
· · ·

(
I − σΛk

)
≤ Q − σ

⎡⎢⎢⎣
(K−1∑

i=0

Λk+i

)T

Q + Q

(K−1∑
i=0

Λk+i

)⎤⎥⎥⎦
+ σ2

[ ∑
k≤i, j≤k+K−1

ΛT
i QΛj +

∑
k≤i<j≤k+K−1

(
QΛiΛj + ΛT

j Λ
T
i Q

)
+ · · ·

]
.

Note that ||Λi|| ≤ ||LH|| and the possible combinations are finite due to the boundedness of K; thus, there exists a constant

c2 > 0 such that the last term on the right-hand side of the last inequality over σ2 is bounded by c2I. Moreover, Q is a

positive definite matrix; thus, there is a suitable constant c3 > 0 such that c3Q ≤ I. Then, we have

ΦT
k+K−1,kQΦk+K−1,k ≤ Q − σc1I + σ2c2I ≤ Q −

[
σc1 − σ2c2

]
c3Q

as long as σ is small enough such that σc1 − σ2c2 > 0 and σc1c3 < 1. In such a case, denote η = 1 − [σc1 − σ2c2]c3, and it

is clear that

ΦT
k+K−1,kQΦk+K−1,k ≤ ηQ, 0 < η < 1, ∀k. (32)

The proof is completed.

Remark 12. It is worth pointing out that the proof of Lemma 3 is quite technical; however, the inherent principle is not

so complicated. Specifically, the introduction of the positive definite matrix Q is to make well-defined expressions in the

analysis. The contract effect of Φk+K−1,k can be interpreted as follows. Λk is a block lower triangular matrix, and then, I−σΛk
is a block lower triangular matrix with its eigenvalues being 1 − σγk(t + τ)λt,i, 1 ≤ i ≤ p, 0 ≤ t ≤ N − τ, where λt,i denotes

the eigenvalue of LtCt+τAt+τ−1
t+1

Bt. Therefore, when γk(t + τ) = 0, the corresponding eigenvalue of I − σΛk is 1, implying

that no contraction occurs but neither any expansion occurs; when γk(t+τ) = 1, the corresponding eigenvalue of I−σΛk is

less than 1 provided that the eigenvalues λt,i are positive and σ is small enough, implying a contraction. The bounded-length

assumption on successive data dropouts actually guarantees the infinitely often contractions along the iteration axis.

Remark 13. From the technical viewpoint, the parameter σ can be solved from the relationship σc1 −σ2c2 > 0 and σc1c3 <

1, ie, σ < min{c1c−1
2
, (c1c3)−1}. Apparently, σ should be small enough when little information of the system is known.

However, a small σ value would render a large value of η, which limits the contraction effect. Thus, there is a trade-off

in selecting parameter σ. In addition, the proof provides a rather conservative estimation of η while the actual contract

influence is usually more efficient.

With the help of Lemma 3, we can give the convergence for the input sequence now.

Theorem 1. Consider the noise-free linear system (18) and the ILC update law (19), where the random data dropouts
follow the RSM case. Assume Assumption 1 holds. Then, the input sequence {uk(t)}, t = 0, · · · ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, … ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix and σ is small enough.

Proof. The proof is carried out based on the inherent convergence principle that there exists at least one contraction during

any K successive iterations. To this end, we can group the iteration number by a modulo operator with respect to K; that is,

all iterations are divided into K subsets, {iK+ j, i ≥ 0}, 0 ≤ j ≤ K− 1. Then, we show the strict contraction mapping of the

input sequence with the subscripts valued in each subset given above.

Define a weighted norm of δUk as Vk = ||δUk||Q ≜
(
δUk

)TQδUk, which can be regarded as a Lyapunov function. Then,

∀0 ≤ j ≤ K − 1, we have

ViK+j =
(
δUiK+j

)TQδUiK+j

=
(
ΦiK+j−1,(i−1)K+jδU(i−1)K+j

)TQΦiK+j−1,(i−1)K+jδU(i−1)K+j

=
(
δU(i−1)K+j

)TΦT
iK+j−1,(i−1)K+jQΦiK+j−1,(i−1)K+jδU(i−1)K+j

≤ η
(
δU(i−1)K+j

)TQδU(i−1)K+j

= ηV(i−1)K+j, i ≥ 1,
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where Equation 27 and Lemma 3 are used. Consequently, we have

E||δUiK+j||Q ≤ ηE||δU(i−1)K+j||Q, ∀0 ≤ j ≤ K − 1, i ≥ 1. (33)

Then, it directly leads to that

E||δUiK+j||Q ≤ ηi
E||δUj||Q, 0 ≤ j ≤ K − 1. (34)

Meanwhile, following the same idea in Lemma 3, the weighted norms of the inputs for the first K iterations, ie, δUj with

0 ≤ j ≤ K − 1, are bounded by the initial one. That is, ∀0 ≤ j ≤ K − 1, we have

Vj =
(
δUj

)TQδUj

=
(
δU0

)T(I − σΛT
0

)
· · ·

(
I − σΛT

j−1

)
Q(I − σΛj−1

)
· · ·

(
I − σΛ0

)
δU0

≤
(
δU0

)TQδU0 = ||δU0||Q,
where U0 denotes the initial input. Incorporating with Equation 34, we evidently derive

E||δUiK+j||Q −−→
i→∞

0, 0 ≤ j ≤ K − 1. (35)

Note that Q is a fixed positive definite matrix; therefore, a direct corollary of Equation 35 is that limk→∞E||δUk||2 = 0. In

other words, the mean square convergence of the update law is established.

Next, we move to show the almost sure convergence. Recalling inequality (34) and noting that Q is a positive definite

matrix, we have

E||δUiK+j||2 ≤ λ−1
min

(Q)ηi
E||δUj||Q, 0 ≤ j ≤ K − 1, (36)

where λmin(·) denotes the smallest eigenvalue of its indicated matrix. It follows that

∞∑
i=0

E||δUiK+j|| ≤ ∞∑
i=0

λ−1∕2

min
(Q)ηi∕2

(
E||δUj||Q)1∕2

≤ λ−1∕2

min
(Q)

(
E||δU0||Q)1∕2

∞∑
i=0

ηi∕2

= λ−1∕2

min
(Q)

(
E||δU0||Q)1∕2 1

1 − η1∕2
< ∞,

which further yields
∞∑

k=0

E||δUk|| = K−1∑
j=0

∞∑
i=0

E||δUiK+j|| < ∞.

Then, by the Markov inequality, for any ϵ > 0, we have

∞∑
k=1

P
(||δUk|| > ϵ

)
≤

∞∑
k=1

E||δUk||
ϵ

< ∞.

This fact leads to P
(||δUk|| > ϵ, i.o.

)
= 0 by the Borel-Cantelli lemma, ∀ϵ > 0, where “i.o.” is short for “infinitely often.”

That is, P
(
limk→∞||δUk|| = 0

)
= 1. In other words, δUk converges to zero almost surely. This completes the proof.

Remark 14. In this section, the noise-free system is taken into account; therefore, the precise convergence of the input

sequence ensures that the system output yk(t) can precisely track the desired reference yd(t), ∀t, with the help of

Assumption 1. Moreover, it is noticed from Equation 34 that the update law (19) for the noise-free system ensures an

exponential convergence speed. Meanwhile, such exponential convergence speed enables us to establish the almost sure

convergence based on the Borel-Cantelli lemma.

4.2 BVM case
When considering the BVM case, the technical lemma for the RSM case in the last subsection, ie, Lemma 3, is no longer

valid due to the inherent randomness of data dropouts. However, in such case, the statistical property of the random variable

γk(t) is valuable for establishing the convergence results. Moreover, in the BVM assumption, the data dropout variable γk(t)
is independent along the iteration axis, that is, for different iteration numbers k ≠ l, γk(t) is independent of γl(t), ∀t. Such

independence will be used in the convergence analysis as follows.
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Theorem 2. Consider the noise-free linear system (18) and the ILC update law (19), where the random data dropouts
follow the BVM case. Assume Assumption 1 holds. Then, the input sequence {uk(t)}, t = 0, … ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, … ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix and σ is small enough.

Proof. We still apply the weighted norm of δUk, Vk = ||δUk||Q = (δUk)TQδUk. Then, we have

Vk+1 =
(
δUk+1

)TQδUk+1

=
(
δUk

)T (I − σΛk)TQ(I − σΛk)δUk. (37)

In the BVM case, the data dropout is independent along the iteration axis, while δUk is constructed based on the information

of the (k − 1)th iteration; thus, I − σΛk is independent of δUk in Equation 37. Consequently, taking the mathematical

expectation to both sides of Equation 37 leads to that

E||δUk+1||Q = E

[(
δUk

)T (I − σΛk)TQ(I − σΛk)δUk

]
= E

[(
δUk

)T
E

(
(I − σΛk)TQ(I − σΛk)

)
δUk

]
. (38)

Notice that

E

(
(I − σΛk)TQ(I − σΛk)

)
= E

(
Q − σ

(
ΛT

k Q + QΛT
k
)
+ σ2ΛT

k QΛT
k

)
= Q − σE

(
ΛT

k Q + QΛT
k
)
+ σ2

EΛT
k QΛT

k . (39)

Recalling the definition of ΛT
k , it is evident that EΛk = γ̄LH. Incorporating with Equation 25 leads to that

E
(
ΛT

k Q + QΛT
k
)
= γ̄I. (40)

On the other hand, there exists a suitable constant c4 > 0 such that

EΛT
k QΛT

k =
κ∑

i=1

P
(
Λk = Λ(i))(Λ(i))TQΛ(i) ≤ c4I, (41)

where P
(
Λk = Λ(i)) denotes the probability that Λk is valued to be Λ(i) and

∑κ
i=1 P

(
Λk = Λ(i)) = 1.

From Equations 39, 40, and 41, it follows that

E

(
(I − σΛk)TQ(I − σΛk)

)
≤ Q − σ(γ̄ − σc4)I. (42)

Using the fact that c3Q ≤ I given in the last subsection, where c3 > 0 is a suitable constant, and substituting Equation 42

into Equation 38, we have

E||δUk+1||Q ≤
(
1 − σ(γ̄ − σc4)c3

)
E||δUk||Q, (43)

and consequently, we have a contraction mapping of E||δUk||Q as

E||δUk+1||Q ≤ η1E||δUk||Q, 0 < η1 < 1,

where η1 ≜ 1 − σ(γ̄ − σc4)c3, as long as we select parameter σ to be small enough such that γ̄ − σc4 > 0 and σγ̄c3 < 1.

Following similar steps to the proof of Theorem 1, we can obtain mean square convergence and almost sure convergence

of zero for the input error δUk. This completes the proof.

Remark 15. The condition on parameter σ is given by 2 inequalities, ie, γ̄ − σc4 > 0 and σγ̄c3 < 1, which leads to

σ < γ̄c−1
4

and σ < γ̄−1c−1
3

. Since γ̄ < 1, the second range can be reduced to σ < c−1
3

. Thus, σ < min{γ̄c−1
4
, c−1

3
}. From this

formulation, we find that the DDR, ie, the average level of data dropouts along the iteration axis, has an important influence

on the selection of parameter σ. Roughly speaking, the smaller the DDR γ̄, the smaller the parameter σ. Meanwhile, as we

have previously explained, smaller selection of σ renders a slower convergence speed. This observation coincides with our

intuitive recognition of the phenomenon that heavy data dropouts would lead to slower convergence of the ILC algorithms.
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4.3 MCM case
In this subsection, we move to consider the MCM case. The MCM case is more general than the BVM case as the independence

property of γk(t) along the iteration axis is no longer valid in the MCM case. Consequently, the separation of δUk and Λk in

Equation 38 is not applicable for the MCM case. This is the motivation of the convergence analysis proposed in this subsection.

In fact, our objective in this subsection is to derive a similar contraction mapping for the MCM case.

With the same design condition of the learning gain matrices Lt given above, we have the following theorem for the MCM case.

Theorem 3. Consider the noise-free linear system (18) and the ILC update law (19), where the random data dropouts
follow the MCM case. Assume Assumption 1 holds. Then, the input sequence {uk(t)}, t = 0, · · · ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, · · · ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix and σ is small enough.

Proof. Note that the matrix Λk is valued from the set 𝔖 = {Λ(1), · · · ,Λ(κ)}. We first point out that the evolution of Λk also

forms a Markov chain.

In the MCM case, the random variable γk(t) forms a Markov chain along the iteration axis, ∀t. From the definition of the

Markov chain, we obtain P
(
γk(t) = rt

k|γk−1(t) = rt
k−1

, · · · , γ1(t) = rt
1

)
= P

(
γk(t) = rt

k|γk−1(t) = rt
k−1

)
, rt

k ∈ {0, 1}, ∀k, t.
Moreover, for different time instants i ≠ j, γk(i) is independent of γk(j). Thus, we have

P
(
γk(τ) = rτk , · · · , γk(N) = rN

k |γk−1(τ) = rτk−1
, · · · , γk−1(N) = rN

k−1
, · · · , γ1(τ) = rτ

1
, · · · , γ1(N) = rN

1

)
= P

(
γk(τ) = rτk , · · · , γk(N) = rN

k |γk−1(τ) = rτk−1
, · · · , γk−1(N) = rN

k−1

)
.

Then, the evolution of Γk along the iteration axis can also be characterized by a Markov chain and so is Λk. Denote the

stationary transition probability matrix (pij)1≤i,j≤κ with

pij = P
(
Λk = Λ( j)

k |Λk−1 = Λ(i))
.

It is evident that min1≤i≤κpi1 > 0.

Apply the weighted norm to δUk, Vk = ||δUk||Q = δUT
k QδUk. Then, we have

Vk+1 =
(
δUT

k+1

)TQδUk+1

=
(
δUk − σΛkδUk

)TQ
(
δUk − σΛkδUk

)
=
(
δUk

)TQδUk − σ
(
δUk

)T[ΛT
k Q + QΛk

]
δUk + σ2

(
δUk

)TΛT
k QΛkδUk. (44)

Note that δUk is no longer independent of Λk. In order to make a separation, denote the σ-algebra

 ′
k = σ

(
xj(0), uj(i), yj(i), γj(i), 1 ≤ j ≤ k − 1, 1 ≤ i ≤ N

)
(ie, the set of all events induced by these random variables) for k ≥ 1. Taking the conditional expectation to both sides of

Equation 44 with respect to  ′
k leads to

E
(
Vk+1| ′

k
)
= Vk − σ

(
δUk

)T
E
(
ΛT

k Q + QΛk| ′
k
)
δUk + σ2

(
δUk

)T
E
(
ΛT

k QΛk| ′
k
)
δUk. (45)

Recalling the stationary transition probability matrix (pij)1≤i,j≤κ , we have that

E
(
ΛT

k Q + QΛk| ′
k
)
≥ c5I, (46)

where c5 > 0 is a suitable constant. On the other hand, note that Q is a positive definite matrix; thus, there exists c6 > 0

such that

E
(
ΛT

k QΛk| ′
k
)
≤ c6I. (47)

Using the fact that c3Q ≤ I and from Equations 45, 46, and 47, we have

E
(
Vk+1| ′

k
)
≤
(
1 − (σc5 − σ2c6)c3

)
Vk. (48)

As a result, we can select σ to be small enough such that 0 < (σc5 −σ2c6)c3 < 1. Then, taking the mathematical expectation

to both sides of Equation 48 implies that

EVk+1 ≤ η2EVk, (49)

where η2 ≜ 1 − (σc5 − σ2c6)c3. This inequality further implies that limk→∞E(δUk)TQδUk = 0. Again, Q is a specified

positive definite matrix; thus, we have limk→∞E(δUk)TδUk = 0. The mean square convergence is thus obtained.
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Now, we move to show the almost sure convergence. In fact, from Equation 48, we have

E
(
Vk+1| ′

k
)
≤ (1 − η2)Vk ≤ Vk, (50)

which yields that {Vk, k ≥ 1} forms a supermartingale. Moreover, Vk is nonnegative for all k ≥ 1. Then, by the martingale

convergence theorem,45 we have that Vk converges to a limit almost surely. When converging in both mean square sense and

almost sure sense, the limitation should be identical. Therefore, Vk converges to zero almost surely, which further yields the

convergence of δUk to zero in the almost sure sense. This completes the proof.

Remark 16. From the proofs of Theorems 1 to 3, we find that the convergence for the 3 cases follows the same inherent

mechanism, that is, making a contraction mapping of a weighted norm of the input error vectors (ie, ||δUk||Q), which is also

regarded as a Lyapunov function. The difference among the 3 cases lies in the iteration contraction length. Specifically, for

the BVM and the MCM, contraction can be made for each iteration, whereas for the RSM, contraction can only be ensured

jointly for K successive iterations, where K is defined in the RSM.

5 CONVERGENCE OF THE STOCHASTIC LINEAR SYSTEM

In this section, we consider the stochastic linear system (1). We will give the mean square and almost sure convergence proofs

for all 3 data dropout models. In addition, the update law is a slight variant of the classic P-type law (19), differing from the

Kalman filtering–based algorithms.31

First, due to the existence of stochastic noise, the ILC update law (19) cannot guarantee stable convergence of the input

sequence. Take the lifted form of Equation 20 for an intuitive understanding of this limitation. If the input sequence {Uk} exists

a stable convergence limitation, then taking the limitation to both sides of Equation 20 leads to limk→∞Uk+1 = limk→∞Uk +
limk→∞σΓkLEk. We can derive a simple corollary that limk→∞Ek = 0. This corollary contradicts with the randomness of Ek in

Equation 12. That is, the tracking error Ek consists of 2 parts, ie, H(Ud−Uk) and ξk; thus, it is impossible to derive limk→∞Ek = 0.

Moreover, by Assumption 2, the stochastic noise cannot be predicted and eliminated by any algorithm; thus, we have to impose

an additional mechanism to reduce the effect of noise along the iteration axis. As a matter of fact, it is well known that an appro-

priate decreasing gain for the correction term in updating processes is a necessary requirement to ensure convergence in the

recursive computation for optimization, identification, and tracking of stochastic systems.46,47 This fact is also illustrated in the

ILC literature such as that by Saab,31,35 in which the Kalman filtering–based method is proposed to deal with the stochastic sys-

tems, and the recursively computed learning gain matrix decreases to zero along the iteration axis. Inspired by this recognition,

we replace the design parameter σ in Equation 19 with a decreasing sequence to cope with the stochastic noise. Specifically,

the ILC update law for the stochastic system is modified as follows:

uk+1(t) = uk(t) + akγk(t + τ)Ltek(t + τ), (51)

where the learning step-size {ak} is a decreasing sequence satisfying that

ak ∈ (0, 1), ak → 0,

∞∑
k=1

ak = ∞,

∞∑
k=1

a2
k < ∞,

1

ak+1

− 1

ak
→ χ > 0. (52)

Remark 17. The decreasing step-size is an additional mechanism to cope with stochastic noise. Clearly, a basic selection

ak = α∕k meets all the requirements of Equation 52 where α > 0 is a tuning parameter. The inherent principle for introducing

ak is as follows. The tracking error Ek consists of 2 parts: the inaccurate tracking part HδUk caused by the inaccurate input

Uk and the stochastic noise part ξk. After sufficient learning iterations, it is believed that the inaccurate tracking part will

significantly diminish such that the stochastic noise part dominates the tracking error. At this phase of the learning process,

the decreasing step-size ak will suppress stochastic noise to ensure stable convergence.

Remark 18. As has been shown by many results in stochastic control and optimization, the introduction of a decreasing

step-size slows down the convergence speed. This fact is due to that the suppression effect of ak is imposed not only on

the stochastic noise but also on the correction information. In fact, it is a classic trade-off between the stable zero-error

convergence and convergence speed for stochastic control. Roughly speaking, the exponential convergence speed for the
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noise-free case is no longer guaranteed. We can only ensure asymptotical convergence for stochastic systems. One may take

interest in how to accelerate the convergence speed for practical applications. An acceleration approach with gain adaptation

is given in the work of Shen and Xu,48 which can be incorporated in the proposed algorithm. However, this is out of our

scope; thus, we omit the details.

Similarly to the noise-free case, we lift the input along the time axis. The update law (51) is rewritten as follows:

Uk+1 = Uk + akΓkLEk, (53)

where Γk and L are given in Equations 21 and 22. Substracting both sides of Equation 53 from Ud, substituting the definition

of Ek = H(Ud − Uk) − ξk (see Equation 12), and using the notation δUk = Ud − Uk lead to

δUk+1 = (I − akΛk)δUk + akξk, (54)

where Λk = ΓkLH is specified in the last section.

Before proceeding to the detailed convergence analysis for the 3 cases, we need to declare that the design condition for the

learning gain matrix Lt remains the same as in the noise-free case. That is, the learning gain matrix Lt should satisfy that

−LtCt+τAt+τ−1
t+1

Bt is a Hurwitz matrix.

In the following subsections, we will give the detailed convergence analyses of Equation 54 for the 3 models in turn. Similarly

to the noise-free system case, the convergence is inherently guaranteed by the contraction property of I−akΛk. However, different

from the noise-free system case, the sufficiently small constant σ is replaced by a decreasing gain sequence {ak}. Consequently,

the constant contraction for the noise-free system is no long valid for I − akΛk. Indeed, for the RSM, an elaborate estimation

on the joint contraction effect is first given, whereas for the BVM and the MCM, such contraction effect is verified according

to their probability properties. Then, we establish the asymptotical convergence based on the preliminary lemmas given in

Section 3.4.

5.1 RSM case
Similar to the noise-free case, we first give a decreasing property for the multiple products of I − akΛk and then show the

convergence with the help of such technical lemma.

Denote

Ψm,n =
(
I − amΛm

)
· · ·

(
I − anΛn

)
, m ≥ n (55)

and Ψm,m+1 ≜ I. Then, the estimate of Ψm,n is given in the following lemma.

Lemma 4. Consider the matrix product (55). If the learning gain matrix Lt satisfies that −LtCt+τAt+τ−1
t+1

Bt is a Hurwitz
matrix, ∀t, then there exist constants c7 > 0 and c8 > 0 such that, for m > n + K, we have

||Ψm,n|| ≤ c7 exp

(
−c8

m∑
i=n

ai

)
, ∀n ≥ 1. (56)

Proof. First, we recall that (LH)TQ + QLH = I and (Λ(i))TQ + QΛ(i) ≥ 0 for i = 2, … , κ (see Equations 25 and 26). The

RSM assumption results in that (K−1∑
i=0

Λk+i

)T

Q + Q

(K−1∑
i=0

Λk+i

)
≥ c1I, ∀k ≥ 0. (57)

Moreover, from Equation 52, for 1 ≤ i ≤ K, we have

am−i

am
− 1 = am−i

(
1

am
− 1

am−i

)
= O(am). (58)
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For any m ≥ n + K − 1, we have

ΨT
m,nQΨm,n = ΨT

m−1,n
(
I − amΛm

)TQ
(
I − amΛm

)
Ψm−1,n

= ΨT
m−K,n

(
I − am−K+1Λm−K+1

)T · · ·
(
I − amΛm

)TQ ×
(
− amΛm

)
· · ·

(
I − am−K+1Λm−K+1

)
Ψm−K,n

= ΨT
m−K,n

[
Q −

( m∑
i=m−K+1

aiΛT
i Q +

m∑
i=m−K+1

aiQΛi

)
+ o(am)

]
Ψm−K,n

= ΨT
m−K,n

{
Q − am

[( m∑
i=m−K+1

ΛT
i

)
Q + Q

( m∑
i=m−K+1

Λi

)]
+ o(am)

}
Ψm−K,n, (59)

where equality (58) is invoked.

Noticing 0 < am < 1 for large enough m and using Equation 57, we have

ΨT
m,nQΨm,n ≤ ΨT

m−K,n
(
Q − amc1I + o(am)

)
Ψm−K,n

≤ ΨT
m−K,nQ

1

2

(
I − amc1Q−1 + o(am)

)
Q

1

2 Ψm−K,n

≤ ΨT
m−K,nQ

1

2

(
I − c1

K
Q−1

m∑
i=m−K+1

ai + o(am)

)
Q

1

2 Ψm−K,n

≤

(
1 − c1

K
λmin(Q−1)

m∑
i=m−K+1

ai + o(am)

)
ΨT

m−K,nQΨm−K,n

≤ exp

(
−c9

m∑
i=m−K+1

ai

)
ΨT

m−K,nQΨm−K,n (60)

for sufficiently large n, where c8 is a positive constant.

Therefore, for sufficiently large n, for example, for n ≥ n0 and m ≥ n + K, we have

ΨT
m,nQΨm,n ≤ c10 exp

(
−c9

m∑
i=n

ai

)
I with c10 > 0, (61)

which, by noticing the definition of Q > 0, implies

||Ψm,n|| ≤ c11 exp

(
−c9

2

m∑
i=n

ai

)
with c11 > 0. (62)

Consequently, for ∀n ≥ n0 + K, ∀n > 0, by Equation 62 and the definition Ψm,m+1 ≜ I, we have

||Ψm,n|| = ||Ψm,n0
|| · ||Ψn0−1,n|| ≤ c7 exp

(
−c8

m∑
i=n

ai

)
, (63)

where c7 is a suitable constant, and c8 = c9∕2. The proof is completed.

Remark 19. Comparing the estimations of the corresponding product (30) for the noise-free case and Equation 56 for the

noise case, we can have a clear understanding of the difference between the fixed step-size σ and the decreasing step-size

ak. Specifically, these 2 estimations are consistent as if we replace the decreasing step-size ak with the fixed but small

enough σ, estimation (56) actually turns into estimation (30). In other words, Equation 30 can be regarded as a special case

of Equation 56.

Now, we can move to show the convergence for the RSM case.

Theorem 4. Consider the stochastic linear system (1) and the ILC update law (51), where the random data dropouts follow
the RSM case. Assume Assumptions 1 and 2 hold. Then, the input sequence {uk(t)}, t = 0, · · · ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, · · · ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix.

Proof. The proof is carried out through grouping the iterations by a modulo operator with respect to K. To this end, all

iterations are divided into K subsets, {iK + j, i ≥ 0}, 0 ≤ j ≤ K − 1. Now, we check the contraction for successive K
iterations, that is, we check the convergence for each subset.
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From Equation 54, it follows, ∀0 ≤ j ≤ K − 1, that

δUiK+j = ΨiK+j−1,(i−1)K+jδU(i−1)K+j +
K−1∑
l=0

ΨiK+j−1,(i−1)K+j+l+1a(i−1)K+j+lξ(i−1)K+j+l. (64)

Apply the weighted norm Vk = ||δUk||Q = δUT
k QδUk. We have that

ViK+j = δUT
iK+jQδUiK+j

=
(
ΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQΨiK+j−1,(i−1)K+jδU(i−1)K+j + 2
(
ΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQϕ∗ + ϕT
∗Qϕ∗, (65)

where

ϕ∗ ≜

K−1∑
l=0

ΨiK+j−1,(i−1)K+j+l+1a(i−1)K+j+lξ(i−1)K+j+l. (66)

From the proof of Lemma 4, it follows that

ΨT
iK+j−1,(i−1)K+jQΨiK+j−1,(i−1)K+j ≤ (1 − c12aiK+j−1 + c13a2

iK+j−1
)Q, (67)

which implies that(
ΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQΨiK+j−1,(i−1)K+jδU(i−1)K+j ≤ (1 − c12aiK+j−1 + c13a2
iK+j−1

)||δU(i−1)K+j||Q. (68)

Noticing that ϕ∗ is a sum of random noise and that the noise variables are independent of the data dropout variables, we have

E
(
ΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQϕ∗ =
(
EΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQ
(
Eϕ∗

)
=
(
EΨiK+j−1,(i−1)K+jδU(i−1)K+j

)TQE
(
E(ϕ∗| ′′

(i−1)K+j−1
)
)
= 0, (69)

where the σ-algebra  ′′
k is augmented from k as  ′′

k = σ(xi(t), ui(t), yi(t), wi(t), vi(t), γi(t), 1 ≤ i ≤ k, 0 ≤ t ≤ N). Moreover,

by Assumption 2, the stochastic noise variables are conditionally independent along the iteration axis; thus, it follows that

EϕT
∗Qϕ∗ = E

(K−1∑
l=0

ΨiK+j−1,(i−1)K+j+l+1a(i−1)K+j+lξ(i−1)K+j+l

)T

× Q

(K−1∑
l=0

ΨiK+j−1,(i−1)K+j+l+1a(i−1)K+j+lξ(i−1)K+j+l

)

= E

(K−1∑
l=0

a2
(i−1)K+j+lξ

T
(i−1)K+j+lΨ

T
iK+j−1,(i−1)K+j+l+1

× QΨiK+j−1,(i−1)K+j+l+1ξ(i−1)K+j+l

)

≤

K−1∑
l=0

a2
(i−1)K+j+lc

2
7

exp

(
−2c8

iK+j−1∑
i=(i−1)K+j+l+1

)
E||ξ(i−1)K+j+l||2 ≤ a2

iK+j−1
c14, (70)

where c14 is a suitable constant such that c14 ≥ c2
7
supkE||ξk||2 ∑K−1

l=0

(
a2
(i−1)K+j+l∕a2

iK+j−1

)
.

Taking the mathematical expectation to both sides of Equation 65 and substituting Equations 67 to 70, we have

EViK+j ≤ (1 − c12aiK+j−1)EV(i−1)K+j + c13a2
iK+j−1

(EV(i−1)K+j + c14∕c13), ∀ 0 ≤ j ≤ K − 1. (71)

Comparing Equation 71 with Equation 15 in Lemma 1, it is found that EViK+j, aiK+j−1 (with respect to recursive index i), c12,

c13, and c14∕c13 correspond to ϑk+1, ak (with respect to recursive index k), d1, d2, and d3, respectively. Then, by Lemma 1,

we have that limi→∞EViK+j = 0, ∀0 ≤ j ≤ K − 1. Moreover, incorporating with the fact that Q is a positive definite matrix,

the mean square convergence is established for each subset of iteration number {iK + j, i ≥ 0}, ie, limi→∞E||δUiK+j||2 = 0,

∀0 ≤ j ≤ K − 1. The mean square convergence of the input sequence {Uk, k ≥ 1} to the desired input Ud is thus obvious.

Next, we proceed to show the almost sure convergence of δUk to zero. Taking a conditional expectation to Equation 65

with respect to σ-algebra  ′′
(i−1)K+j−1

, it follows that

E
(
ViK+j| ′′

(i−1)K+j−1

)
≤ V(i−1)K+j + c13a2

iK+j−1
(V(i−1)K+j + c14∕c13), ∀ 0 ≤ j ≤ K − 1. (72)

Note that the 2 terms on the right-hand side of the last inequality, ie, V(i−1)K+j and c13a2
iK+j−1

(V(i−1)K+j+c14∕c13), correspond

to X(n) and Z(n) in Lemma 2, respectively. Moreover, it has been shown that EV(i−1)K+j converges to zero as i → ∞; thus,

it is evident that

∞∑
i=0

E

[
c13a2

iK+j−1
(V(i−1)K+j + c14∕c13)

]
≤
(
c13 sup

i
EV(i−1)K+j + c14

) ∞∑
i=0

a2
iK+j−1

< ∞. (73)
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In other words, the conditions in Lemma 2 are fulfilled. Therefore, it follows that ViK+j converges almost surely as i → ∞,

∀j. On the other hand, we have shown that δUiK+j converges to zero in the mean square sense. Then, the almost surely

convergent limitation of δUiK+j should also be zero. The proof is completed.

5.2 BVM case
In this subsection, we give the convergence analysis for the BVM case. In such case, the deterministic contraction of the RSM

is not valid; however, the independence of data dropouts would help establish the convergence similar to the last section.

Theorem 5. Consider the stochastic linear system (1) and the ILC update law (51), where the random data dropouts follow
the BVM case. Assume Assumptions 1 and 2 hold. Then, the input sequence {uk(t)}, t = 0, · · · ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, · · · ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix.

Proof. Let us recall update law (53) as follows:

Uk+1 = Uk + akΓkLEk.

Subtracting both sides of the last equation from Ud, we have

δUk+1 = δUk − akΓkLEk

= δUk − akΓkLHδUk + akΓkξk

= δUk − akγ̄LHδUk + ak
(
γ̄I − Γk

)
LHδUk + akΓkξk. (74)

Note that γ̄I is the mathematical expectation of Γk. Now, let us apply the weighted norm of δUk, Vk = ||δUk||Q, ie,

Vk+1 = δUT
k+1

QδUk+1

= δUT
k QδUk + a2

k γ̄
2δUT

k
(
LH

)TQLHδUk + a2
kξ

T
k Γ

T
k QΓkξk + a2

kδUT
k (LH)T

(
γ̄I − Γk

)
Q
(
γ̄I − Γk

)(
LH

)
δUk

− akγ̄δUT
k

[(
LH

)TQ + QLH
]
δUk + 2ak

(
δUk − akγ̄LHδUk

)TQ
(
γ̄I − Γk

)(
LH

)
δUk

+ 2ak
(
δUk − akγ̄LHδUk

)TQΓkξk + 2a2
kδUT

k
(
LH

)T(γ̄I − Γk
)
QΓkξk. (75)

Note that Uk is constructed on the basis of the data from the (k − 1)th iteration; thus, it is independent of the data dropout

variable at the kth iteration, ie, Γk. This fact gives that

E

[(
δUk − akγ̄LHδUk

)TQ
(
γ̄I − Γk

)(
LH

)
δUk

]
= 0. (76)

Similarly, the independence of Uk, Γk, and ξk yields

E

[(
δUk − akγ̄LHδUk

)TQΓkξk

]
= 0, (77)

E

[
δUT

k
(
LH

)T(γ̄I − Γk
)
QΓkξk

]
= 0, (78)

where Assumption 2 is applied.

Taking the mathematical expectation to both sides of Equation 75 and substituting Equations 76 to 78 as well as the

Lyapunov equation (LH)TQ + QLH = I, we have

EVk+1 = EVk − akγ̄EδUT
k δUk + a2

k γ̄
2
E

[
δUT

k
(
LH

)TQLHδUk

]
+ a2

kE
[
ξT

k Γ
T
k QΓkξk

]
+ a2

kE
[
δUT

k (LH)T
(
γ̄I − Γk

)
Q
(
γ̄I − Γk

)(
LH

)
δUk

]
. (79)

According to Assumption 2, there exists a suitable constant c15 > 0 such that

E
[
ξT

k Γ
T
k QΓkξk

]
< c15. (80)

Moreover, due to the positive definite property of Q, there are c16 > 0 and c17 > 0 such that

E

[
δUT

k
(
LH

)TQLHδUk

]
≤ c16EVk, (81)

E
[
δUT

k (LH)T
(
γ̄I − Γk

)
Q
(
γ̄I − Γk

)(
LH

)
δUk

]
≤ c17EVk. (82)
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Substituting Equations 80 to 82 and the inequality c3Q ≤ I into Equation 79 leads to

EVk+1 ≤ (1 − akγ̄)EVk + a2
k
(
c15 + (γ̄2c16 + c17)EVk

)
. (83)

Then, it is evident thatEVk corresponds to ϑk in Lemma 1. Applying Lemma 1, it follows that limk→∞EVk = 0, which further

implies that E||δUk||2 = 0 by the fact that Q is a positive definite matrix. The mean square convergence is thus obtained.

Next, we proceed to show the almost sure convergence with the help of Lemma 2. To this end, taking the conditional

expectation to both sides of Equation 75 with respect to  ′′
k−1

, it follows that

E
(
Vk+1| ′′

k−1

)
≤ Vk + a2

k
(
c15 + (γ̄2c16 + c17)Vk

)
. (84)

Condition (17) is easy to verify for the last term of the above inequality with the help of the mean square convergence.

Therefore, by using Lemma 2, it gives that δUk converges almost surely. Similar to the steps in the proof for Theorem 4, the

almost sure convergence of the input sequence {Uk} is verified. This completes the proof.

5.3 MCM case
In this subsection, the convergence analysis for the MCM case is given. As previously explained, the inherent difference between

the BVM case and the MCM case is the iteration dependence of the data dropout in the MCM case. Thus, the proof can be

carried out by modifying the step of taking the mathematical expectation in the proof of Theorem 5 as a conditional expectation.

In the following, we will only give the main sketch of the proof, to save space.

Theorem 6. Consider the stochastic linear system (1) and the ILC update law (51), where the random data dropouts follow
the MCM case. Assume Assumptions 1 and 2 hold. Then, the input sequence {uk(t)}, t = 0, · · · ,N − τ, achieves both mean
square convergence and almost sure convergence to the desired input ud(t), t = 0, · · · ,N − τ, if the learning gain matrix Lt
satisfies that −LtCt+τAt+τ−1

t+1
Bt is a Hurwitz matrix.

Proof. Note that the data dropout is not independent along the iteration axis; thus, it is unsuitable to derive an expectation

of Γk as we have done in Equation 74. In fact, the expression for δUk+1 is

δUk+1 = δUk − akΓkLHδUk + akΓkξk, (85)

and then, the expansion of Vk+1 is formulated as

Vk+1 = Vk + a2
kδUT

k
(
LH

)TΓT
k QΓkLHδUk + a2

kξ
T
k Γ

T
k Γkξk − akδUT

k
[
ΛT

k Q + QΛk
]
δUk

+ ak
[
δUT

k QΓkξk + ξT
k Γ

T
k QδUk

]
− a2

k
[
δUT

k Λ
T
k QΓkξk + ξT

k Γ
T
k QΛkδUk

]
, (86)

where Λk = ΓkLH has been previously defined.

Note that ξk is independent of other signals; thus, we have

E
(
δUT

k QΓkξk + ξT
k Γ

T
k QδUk| ′′

k−1

)
= 0, (87)

E
(
δUT

k Λ
T
k QΓkξk + ξT

k Γ
T
k QΛkδUk| ′′

k−1

)
= 0. (88)

Moreover, Γk is a bounded matrix; thus, there exists c18 > 0 such that

E
(
ξT

k Γ
T
k Γkξk| ′′

k−1

)
< c18. (89)

Furthermore, δUk is adapted to  ′′
k−1

according to the definition of update law, whereas the probability transition matrix

for the stochastic matrix Λk has a positive probability of returning to Λ(1), ie, min1≤i≤κP(Λk = Λ(1)|Λk−1 = Λ(i)) > 0 (see

Section 4.3); therefore, there exists a constant c19 > 0 such that

E
(
ΛT

k Q + QΛk| ′′
k−1

)
≥ c19I. (90)

Using Equations 87 to 90, we are able to derive from Equation 86 that

E
(
Vk+1| ′′

k−1

)
≤ Vk − akc19c3Vk + a2

kc20Vk + a2
kc18, (91)

where c20 > 0 is a constant such that

E

(
δUT

k
(
LH

)TΓT
k QΓkLHδUk| ′′

k−1

)
≤ c20Vk.
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Then, taking the mathematical expectation to Equation 91, we have

EVk+1 ≤ (1 − akc19c3)EVk + a2
k(c18 + c20EVk). (92)

From now on, the steps are similar to the proof of Theorem 5. The mean square and almost sure convergence of the input

sequence {Uk} to the desired input Ud can be obtained with the help of Lemmas 1 and 2. The proof is thus completed.

5.4 Further remarks
Remark 20. From the proofs in this section and in the last section, we may find the technical connections and differences

among the 3 different cases. Specifically, the proof for the BVM case forms a basic procedure of the technical convergence

analysis, in which, by taking the expectation of the random variable of the data dropouts, we can derive a separation formula

of the input error δUk+1, namely, the contraction mapping of the input error and 2 additional zero-expectation errors (see

Equation 74 for details). Then, the convergence proof can be established with the help of Lemmas 1 and 2. That is, the

additive formulation (74) plays a basic role for the following analysis. For the RSM case and the MCM case, this basic

formula should be modified accordingly. In particular, for the RSM case, the 1-step/iteration contraction relationship in

the BVM case (ie, (I − akγ̄LH)δUk in Equation 74) has to be extended to K-step/iteration contraction relationship (see

Equation 64 for a clear expression). This is also why we have to give a technical lemma for estimating Ψm,n (see Lemma 4)

before stating the main theorem. For the MCM case, the specific separation of Equation 74 cannot be derived due to

the iteration dependence of data dropouts, but a similar contraction relationship can be obtained by taking a conditional

expectation. In fact, this is the inherent difference between the BVM case and the MCM case, which originates from the

model differences of the BVM and the MCM. To sum up, the RSM case and the MCM case are extensions of the BVM

case from different aspects, and additional treatments are developed to complete the convergence analysis.

Remark 21. The essential step in the above proofs is to establish a decreasing trend of the weighted norm of the input

error, ie, EVk = E||δUk||Q. For the noise-free system, it is seen that a monotonic decreasing trend for EVk is derived, and

the exponential convergence speed is thus guaranteed. Then, the almost sure convergence can be derived by applying the

Borel-Cantelli lemma. For the noised system or the stochastic system, due to the existence of stochastic noise, it is impossible

to reach the monotonic decreasing trend for EVk. However, a weak version of the decreasing trend can be established, ie,

EVk+1 ≤ (1 − akd1)EVk + a2
kd2(EVk + d3). This formula implies that the main trend of EVk is still decreasing, as shown by

the term (1−akd1)EVk, but it could be involved with a faster attenuation term, as shown by the term a2
kd2(EVk +d3). In such

case, we can still ensure the convergence to zero of EVk. Moreover, the almost sure convergence is established with a weak

version of the convergence theorem for a nonnegative supermartingale sequence. Specifically, let us revisit Lemma 2. If Z(n)
is removed from Equation 16, then X(n) (corresponding to Vk in the following theorems) forms a supermartingale, and the

almost sure convergence is thus guaranteed. Lemma 2 implies that the almost sure convergence is still true for X(n) as long

as the infinite sum of the additional term Z(n) is finite in the mathematical expectation sense. To sum up, the mean square

convergence and the almost sure convergence for the 3 models are established in a framework based on 2 technical lemmas.

Remark 22. It should be pointed out that although we do not provide a similar estimate of Ψm,n for the BVM and MCM

cases, the estimate in Lemma 4 is also valid for the latter 2 cases with m ≥ n. Such derivations can be made following

similar steps to the proof of Lemma 4. In fact, the similar conclusions have been merged into the convergence proofs for

the latter cases (see the steps for deriving Equations 79 and 91). In fact, it is the decreasing property of Ψm,n that essentially

guarantees the convergence of the algorithms. In addition, the estimation of Ψm,n also implies the convergence speed of the

stochastic system case. Specifically, we may write that ||Ψm,1|| = O
(
exp

(
− β

∑m
k=1 ak

))
. Let us select an alternative for

{ak} as an illustration, ie, ak = 1∕k. It is well known that the mth harmonic number has an estimate
∑m

k=1 ak = O
(

log m
)
.

Then, we have ||Ψm,1|| = O
(
exp

(
− β′ log m

))
= O

(
m−β′). This rate of convergence coincides with the basic knowledge

of stochastic control.

Remark 23. From the design condition of the learning gain matrix, it is seen that the critical components for ensuring the

convergence are the diagonal blocks of LH, ie, LtCt+τAt+τ−1
t+1

Bt, denoting the input/output coupling matrix, whereas the

nondiagonal blocks of LH have little influence on the essential convergence. From this viewpoint, the results of this paper

can be extended to affine nonlinear systems without significant efforts. The extension from linear systems to affine nonlinear

systems has been reported in many existing papers. Here, we omit the tedious discussions to avoid repetition.
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6 ILLUSTRATIVE EXAMPLES

The main objective of this paper is to propose a general framework for the convergence analysis of ILC algorithms under various

kinds of data dropout models. In the last 2 sections, the detailed analysis steps and techniques are elaborated. In this section,

we verify the theoretical results with a time-varying linear system (At,Bt,Ct) where

At =

[
0.2 exp (−t∕100) −0.6 0

0 0.50 sin(t)
0 0 0.7

]
,

Bt =
[

0 0.3 sin(t) 1
]T
,

Ct =
[

0 0.1 0.8
]
.

The iteration length is set to be N = 100. The tracking reference is yd(t) = 0.5 sin
(

t
20
π
)
+ 0.25 sin

(
t

10
π
)

. The initial state for

all the iterations is set to xk(0) = xd(0) = 0. The algorithm is run for 150 iterations for each case.

It should be noted that the actual tracking performance and the convergence speed depend on the average DDR. In the RSM,

the assumption is made according to the worst case of successive data dropouts rather than the average DDR. In other words, a

larger integer K does not necessarily imply a larger DDR. In the BVM, the expectation of the random variable γk(t) corresponds

to the average DDR. In the MCM, the DDR is jointly determined by the transition probability matrix, that is, it can be computed

by deriving the stationary distribution. Specifically, the 3 models are simulated as follows.

RSM We consider 5 cases for the RSM case. To simulate the data missing, we first separate the iterations into groups of M
successive iterations, M = 2, · · · , 6, that is, the iterations are separated as {kM+1, kM+2, · · · , (k+1)M}, k = 0, 1, 2, · · ·,
and randomly select 1 iteration from each group denoting the one whose data are dropped during transmission. In such

case, the successive number K is 3. For example, take M = 3, then the iterations are separated as {1, 2, 3}, {4, 5, 6}, · · ·,
and from each group, 1 iteration is selected randomly. Therefore, the DDR for the above 5 cases is equal to 1∕2, 1∕3,

1∕4, 1∕5, and 1∕6, respectively.

BVM We consider 4 cases for the mathematical expectation of the random variable γk(t). That is, γ̄ = 0.9, 0.7, 0.5, and 0.3.

The smaller the expectation is, the larger the DDR is. Specifically, the DDR is equal to 1 − γ̄. As a consequence, the

DDR values for the above 4 cases are 0.1, 0.3, 0.5, and 0.7. Additionally, the no-data-dropout case, namely, γ̄ = 1, is

also simulated for a comparison.

MCM We consider 4 cases for the transition probability matrix as follows: μ = 0.8, ν = 0.5; μ = 0.7, ν = 0.5; μ = 0.6, ν = 0.6;

μ = 0.5, ν = 0.7. The stationary distribution π for a transition probability matrix P can be computed from πP = π and is

given as π =
[

1−ν
2−μ−ν

,
1−μ

2−μ−ν

]
. Thus, the average DDR is equal to

1−μ
2−μ−ν

. As a consequence, the DDR values for the above

4 cases are 2∕7, 3∕8, 1∕2, and 5∕8. Additionally, the no-data-dropout case, namely, μ = 1 and ν = 0, is also simulated

for a comparison.

We first check the noise-free system case. In this case, we set σ = 0.4 and Lt = 1. The simulation is run according to the 3

data dropout models. The maximal tracking error for each iteration is defined as max1≤j≤N|ek( j)|. The maximal tracking error

profiles along the iteration axis are plotted in Figure 3. The Figure exhibits 2 observations. One is that the convergence speed

slows down as the DDR increases, that is, larger DDR would result in slower convergence speed. The other one is that the

maximal tracking error profiles approximate straight lines in the logarithm axis, which demonstrates that the convergence is

exponential when no noise is involved in the system.

When the system is involved with random noise, an additional decreasing learning sequence should be introduced to the ILC

rule to guarantee stable convergence of the proposed algorithms. The tracking performance is shown in Figure 4, where the

random noise is assumed to be white Gaussian noise, namely, subject to  (0, σ2) with σ = 0.1. In the simulation, the learning

gain is set as Lt = 1.5, and the decreasing sequence selects ak = 1

k+1
. We have some observations from Figure 4. First of all,

due to the existence of random noise, the final tracking error cannot reduce to zero as the iteration number increases, and the

maximal tracking error profiles would fluctuate heavily. Moreover, the introduction of {ak} makes the convergence speed much

slower than in the noise-free case. However, it is a natural requirement for the control of stochastic systems. In addition, the

influence of DDR on the convergence speed is similar to that of the noise-free case, which implies that stochastic noise and

random data dropouts impact the performance independently.
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FIGURE 3 Maximal tracking error profiles for the noise-free system along the iteration axis. A, Random sequence model (RSM) case where

Cases 1 to 5 correspond to the data dropout rate (DDR) being 1∕2, 1∕3, 1∕4, 1∕5, and 1∕6, respectively; B, Bernoulli variable model (BVM) case

where Cases 1 to 4 correspond to the DDR being 0.1, 0.3, 0.5, and 0.7, respectively; C, Markov chain model (MCM) case where Cases 1 to 4

correspond to the DDR being 2∕7, 3∕8, 1∕2, and 5∕8, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

Comparing Figures 3 and 4, we can observe the connections and differences of the tracking performance between the 2 cases.

On one hand, the convergence speed is determined by the average DDR for both cases as DDR is a direct index for the renewal

frequency. On the other hand, the tracking precision depends much on the DDRs in the noise-free system case, whereas such

dependence is not distinct for the stochastic system case because the stochastic noise will dominate the tracking error after several

first iterations. In addition, the convergence speed for the stochastic system case greatly slows down due to the introduction of

the decreasing gain sequence.

To sum up, the simulation results verify the theoretical results given in previous sections. Moreover, the convergence speed

is determined by the selection of learning gain matrices as well as the DDR, where the former is a tunable factor, and the

latter is an external factor due to the transmission quality of the channels. This paper is devoted to establishing a general

convergence analysis framework for ILC under various data dropout models; thus, we mainly employ the basic simulations to

show a validation of the theoretical results.
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FIGURE 4 Maximal tracking error profiles for the noised system along the iteration axis. A, Random sequence model (RSM) case where Cases 1

to 5 correspond to the data dropout rate (DDR) being 1∕2, 1∕3, 1∕4, 1∕5, and 1∕6, respectively; B, Bernoulli variable model (BVM) case where

Cases 1 to 4 correspond to the DDR being 0.1, 0.3, 0.5, and 0.7, respectively; C, Markov chain model (MCM) case where Cases 1 to 4 correspond to

the DDR being 2∕7, 3∕8, 1∕2, and 5∕8, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

7 CONCLUSIONS

In this paper, we have considered the convergence analysis for ILC under random data dropout environments. To this end,

a framework was given to demonstrate both mean square and almost sure convergence properties of the classic P-type ILC

update law for 3 kinds of data dropout models. Specifically, the RSM, the BVM, and the MCM were addressed in turn for both

noise-free systems and stochastic systems, respectively. While we dealt with the case that the network at the measurement side

suffers random data dropouts to clarify our idea, the extension to the case that the networks at both sides suffer random data

dropouts directly follows the same analysis framework. In addition, the results can be extended to other types of ILC algorithms

such as PD-type and current-iteration-feedback-integrated type update laws. For further research, we find that the transmission

of data through networks would suffer many problems such as transmission error, bandwidth limitation, and transmission delay;

therefore, it is of great interest to investigate on how to generalize the proposed results to deal with more general networked ILC

problems.
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APPENDIX

Proof of Lemma 1
From Equation 15, we have

ϑk+1 ≤ (1 − d1ak + d2a2
k)ϑk + d2d3a2

k . (A1)

Since ak → 0, we can choose a sufficient large integer k0 such that 1 − d1ak + d2a2
k < 1 for all k ≥ k0, and then, we have

ϑk+1 ≤ ξk + d4a2
k , (A2)

where d4 ≜ d2d3. As a result, it follows from Equation A2 and
∑∞

k=1 a2
k < ∞ that supkϑk < ∞, and then, ϑk converges. Based

on this boundedness, from Equation A1, we have that

ϑk+1 ≤ (1 − d1ak)ξk + d5a2
k , (A3)

where d5 > 0 is a suitable constant. Noticing that
∑∞

k=1 ak = ∞ and
∑∞

k=1 a2
k < ∞, we conclude that limk→∞ϑk = 0. □
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