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a b s t r a c t

This paper considers the learning consensus problem for heterogenous high-order nonlinear multi-agent
systems with output constraints. The dynamics consisting of parameterized and lumped uncertainties
is different among different agents. To solve the consensus problem under output constraints, two
distributed control protocols are designedwith the help of a novel barrier Lyapunov function,which drives
the control updating and parameters learning. Both convergence analysis and constraint satisfaction are
strictly proved by the barrier composite energy function approach. Illustrative simulations are provided
to verify the effectiveness of the proposed protocols.
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1. Introduction

In the past decades,multi-agent system (MAS) coordination and
control problems have attracted much attention from the control
community.Much progress has emerged in formation control, syn-
chronization, flocking, swarm tracking, and containment control
among others. For these problems, the consensus framework is
an effective approach (Cao, Yu, Ren, & Chen, 2013). The setting of
a consensus problem involves triple components, namely, agent
model, information exchange topology, and distributed consensus
algorithm, respectively. For the agent model, the existing results
cover single integrator model (Olfati-Saber & Murray, 2004; Ren,
Beard, & Atkins, 2007), double integrator model (Hong, Hu, &
Gao, 2006; Ren, 2008; Zhang & Tian, 2009), high-order integrator
model (Cui & Jia, 2012), linear system (Scardovi & Sepulchre, 2009;
Yu & Wang, 2014), and nonlinear system (Chen & Lewis, 2011;
Mehrabian & Khorasani, 2016; Mei, Ren, & Ma, 2011). Moreover,
the information exchange topology, described by a graph, has been
thoroughly developed in the existing literature (Fang & Antsaklis,
2006; Tahbaz-Salehi & Jadbabaie, 2008). Last, the consensus al-
gorithm is important to generate complex group-level behaviors
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using simple local coordination rules, which are highly related to
practical problems (Khoo, Xie, & Man, 2009; Ren & Beard, 2008;
Yang, Tan, & Xu, 2013).

Iterative learning control (ILC) is a matured intelligent con-
trol technique to achieve high precision tracking performance by
the inherent repetition mechanism (Ahn, Chen, & Moore, 2007;
Shen & Wang, 2014; Xu, 2011). Therefore, the ILC strategy has
been applied for MASs to achieve learning consensus recently.
Ahn and Chen (2009) proposed the first result on formation con-
trol using the learning strategy. Later, the reports on satellite
trajectory-keeping (Ahn, Moore, & Chen, 2010), mobile robots for-
mation (Chen& Jia, 2010), and coordinated train trajectory tracking
(Sun, Hou, & Li, 2013) illustrate successful applications of ILC to
MASs. For theoretical research, Yang, Xu, Huang, and Tan (2014,
2015) employed the contractionmappingmethod for convergence
analysis of affine nonlinear MASs. The 2D system technique was
used to prove the consensus performance in Meng, Jia, and Du
(2013, 2015, 2016) andMeng andMoore (2016) for linear systems.
The Lyapunov function method was introduced in Li and Li (2013,
2015, 2016) for MASs where agents were of first-order, second-
order andhigh-ordermodels, respectively. Yang andXu (2016) also
provided a composite energy function (CEF) based analysis for net-
worked Lagrangian systems. While various techniques have been
developed for the ILC-basedMAS consensus, the existing literature
mainly focuses on the conventional system setting without any
constraint on the system output.

However, when concerning MASs in the real world, it is
found that nearly almost all real systems are subject to certain
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constraints. The constraints arise for the output due to various
practical limitations and safety considerations. If we ignore such
constraints and conduct the conventional control strategy, the sys-
tem output may be beyond the tolerant range and lead to serious
problems. For example, a platoon of auto-vehicles is a typical MAS,
in which the vehicles are required to stay in a regulated range and
run within the speed limit all the time. Consequently, when up-
dating the control signal, we should always take these constraints
into consideration in order to guarantee a safe drive. Otherwise,
traffic accidentswould arise for the automatic drive if the vehicle is
either out of the road range or over the speed limit. Moreover, due
to the physical limitation of wireless networks, there usually exists
an upper bound of communication bandwidth in MASs; therefore,
the output of each agent should fall in a specified range so that
the transmitted data would not exceed the maximal bandwidth.
In addition, in consideration of implementation cost, simple and
cheap measurement devices are widely used in industrial and au-
tomation systems,whichmay only provide a limitedmeasurement
range. In such case, the agent output is required not to exceed
the range; otherwise, the output is difficult to measure and then
the update cannot proceed. From these observations, we note
that the output of each agent in a MAS generally has to satisfy
certain constraints, which has not been considered in the existing
literature. Once the output constraints are required, it is a natural
question how to design and analyze the learning update laws for
MASs. This problem motivates the research of this paper. In this
paper, we try to propose distributed learning protocols to achieve
asymptotical consensus along the iteration axis and guarantee the
output constraints simultaneously.

To this end,we apply the idea of barrier Lyapunov function (BLF)
similar to Jin and Xu (2013) and Xu and Jin (2013) to handle the
output constraints problem. Differing from Jin and Xu (2013) and
Xu and Jin (2013), we introduce a general type of BLF and apply it to
the design of distributed learning protocols for heterogenous high-
order nonlinearMASs. In particular, for aMASwhere the dynamics
of each agent consists of parameterized and lumped uncertainties,
we first define a group of auxiliary functions based on the newly
introduced BLF and then apply these functions in the design of
the protocols. In this paper, two control protocols are designed.
The first one introduces sign functions of the involved quantities
to regulate control compensation so that the zero-error asymp-
totical consensus is achieved while satisfying output constraints.
However, such protocol may cause chattering problem due to
the frequent sign switching. To facilitate practical applications,
we further propose the second control protocol, where the sign
function is approximated by a hyperbolic tangent function. In such
case, we only guarantee the bounded convergence performance;
however, we present a precise estimation of the upper bound,
which can help to tune the protocol parameters for a specified
consensus performance. We note that Li and Li (2013, 2015, 2016)
also applied the CEF method for learning consensus problem. Our
paper differs from Li and Li (2013, 2015, 2016) in three aspects:
(1) we concentrate on the consensus under output constraints and
introduce a general BLF; (2) we provide practical alternative of the
algorithm implementations; and (3) we employ distinct analysis
techniques.

The rest of the paper is arranged as follows. Section 2 pro-
poses the problem formulation and the general barrier Lyapunov
function. Section 3 presents two control protocols and the main
theorems, whose proofs are put in the Appendix. Section 4 gives
illustrative simulations on an engineering system. Section 5 con-
cludes this paper.

Notations: G = (V , E ) is a weighted graph. V = {v1, . . . , vN}

is a nonempty set of nodes/agents, where N is the number of
nodes/agents. E ⊆ V × V is the set of edges/arcs. (vi, vj) ∈ E

indicates that agent j can get information from agent i. A =

[aij] ∈ RN×N denotes the topology of a weighted graph G . aij is
the weighted value, and aij = 1 if (vi, vj) ∈ E , otherwise aij = 0.
In addition, aii = 0, 1 ≤ i ≤ N . di =

∑N
j=1aij is the in-degree

of agent i. D = diag{d1, . . . , dN} is the in-degree matrix. L =

D − A is the Laplacian matrix of a graph G . Ni denote the set
of all neighborhoods of ith agent, where an agent vj is said to be
a neighborhood of agent vi if vi can get information from vj. An
agent does not belong to its neighborhood. εj denote the access of
jth agent to the desired trajectory, that is, εj = 1 if agent vj has
direct access to the full information of desired trajectory, otherwise
εj = 0. ∥x∥ denotes the Euclidean norm for a vector x.

2. Problem formulation

Consider a heterogeneous MAS formulated by N (N > 2)
agents, where the jth agent is modeled by the following high-order
nonlinear system

ẋi,j,k = xi+1,j,k, i = 1, . . . , n − 1,

ẋn,j,k = θ T
j (t)ξj,k(t) + bj,k(t)uj,k + ηj,k(t),

yj,k = {x1,j,k, x2,j,k},

(1)

where i = 1, 2, . . . , n denotes the ith dimension of state, j =

1, 2, . . . ,N denotes the agent, and k = 1, 2, . . . is the iteration
number. Denote the state of the jth agent at the kth iteration as
xj,k ≜ [x1,j,k, . . . , xn,j,k]T . θ T

j (t)ξj,k(t) is the parametric uncertainty,
where θj(t) is an unknown parameter vector of the jth agent,
which is continuous and bounded on the operation interval [0, T ],
while ξj,k(t) ≜ ξj(xj,k, t) is a known time-varying vector-function.
bj,k(t) ≜ bj(xj,k, t) is the unknown time-varying control gain.
ηj,k(t) ≜ ηj(xj,k, t) is the unknown lumped uncertainty with a
known upper bounded function |ηj(xj,k, t)| ≤ ρ(xj,k, t). In the
following, denote ξj,k ≜ ξj(xj,k, t), bj,k ≜ bj(xj,k, t), ηj,k ≜ ηj(xj,k, t),
and ρj,k ≜ ρ(xj,k, t) where no confusion arises. The system output
yj,k = {x1,j,k, x2,j,k} can be either x1,j,k or x2,j,k or both, but cannot be
varying. For the high-order system, it is required that the outputs
should satisfy the given boundedness constraints.

Remark 1. The agent model (1) was also investigated in Li and Li
(2016), where the input gain is set to be one and the lumped uncer-
tainty is bounded by a constant. The model (1) for a single system
was also considered in Jin and Xu (2013), where the lumped un-
certainty is assumed to be variation-norm-bounded. In such case,
the tracking reference is assumed to take the same structure of the
system model. In this paper, all these requirements are removed.
In addition, the model (1) represents a wide range of system un-
certainties, as the neural networks and fuzzy approximation-based
transformations of general nonlinear systems usually conform to
this model.

Let the desired trajectory (virtual leader) be xr , xr ≜ [x1,r , . . . ,
xn,r ]T satisfying that ẋi,r = xi+1,r , 1 ≤ i ≤ n − 1 and ẋn,r = f (t, xr )
with bounded f (t, xr ).

The following assumptions are required for analysis.

A1 Assume that the input gain bj,k does not change its sign.
Meanwhile, it has lower and upper bounds. That is, we
assume 0 < bmin ≤ bj,k ≤ bmax, where bmin is known.

A2 Each agent satisfies the alignment condition, xj,k(0) = xj,k−1
(T ). In addition, the desired trajectory is spatially closed, that
is, xr (0) = xr (T ).

Remark 2. In the conventional ILC literature, the so-called identi-
cal initialization condition (i.i.c.), i.e., xj,k(0) = xr (0) for all agents
and iterations, is the most common assumption for iteration re-
initialization. However, this condition is difficult to satisfy for
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many MASs as it requires both time and spatial resetting for all
agents. In this paper, we employ the alignment condition, in which
the spatial resetting is removed. In other words, we only require
that the new iteration starts from the position where they stop in
the previous iteration. Such condition is widely satisfied in motion
systems and manipulator systems.

Denote the tracking error of the jth agent to the desired tra-
jectory as ej,k ≜ xj,k − xr = [e1,j,k, . . . , en,j,k]T . However, not
all agents can access the desired trajectory. Thus, the tracking
error ej,k is available only for a part of the agents that the virtual
leader is within their neighborhood. Meanwhile, any agent could
acknowledge the information of its neighbor agents. Therefore, for
the jth agent, we define the extended observation error as zj,k ≜

[z1,j,k, . . . , zn,j,k]T =
∑N

l=1ajl(xj,k − xl,k) + εj(xj,k − xr ).
The control objective of the heterogenous high-order MAS is to

design distributed control protocols such that the tracking error
converges to zero and the specified boundedness constraints of
outputs are ensured for all agents.

To obtain a compact form of the MAS, denote ēi,k, x̄i,k, and z̄i,k as
the stack of tracking errors, states, and extended observation errors
for all agents at the ith dimension, i.e., ēi,k = [ei,1,k, . . . , ei,N,k]

T ,
x̄i,k = [xi,1,k, . . . , xi,N,k]

T , z̄i,k = [zi,1,k, . . . , zi,N,k]
T . Noting L 1 = 0,

we have

z̄i,k = L (x̄i,k − 1xi,r ) + Bēi,k = (L + B)ēi,k, (2)

where B = diag{ε1, . . . , εN} and 1 = [1, . . . , 1]T ∈ RN . Let
H = L + B.

We give the assumption on communication topology.

A3 The graph is fixed and directed. The virtual leader is globally
reachable in the extended graph G consisting of N agents
and the virtual leader.

Remark 3. Assumption A3 assumes that the virtual leader is
directly accessed to a part of agents and globally reachable for
all agents. Here, by globally reachable we mean there is a path
from the virtual leader to the agent possibly passing several other
agents (denoting the information transmission direction). This as-
sumption is necessary for a leader–follower consensus tracking
problem. We note that several papers presented the directed and
switching topologies (Meng et al., 2015, 2016; Meng & Moore,
2016). The pivotal principle of convergence in these papers is to
ensure a contraction or joint contraction for all possible topologies.
Thus, the systems are generally linear and the learning gain matrix
depends on the graph information. In this paper,we concentrate on
high-order nonlinear systems with output constraints and provide
a newBLF for the solution. Our results can be extended to switching
graph following the main procedures but with additional require-
ments and derivations. We restrict our discussions to fixed graph
to present a concise proof of the main results.

Based on A3, we can conclude that H is a positive stable
matrix as B is a nonnegative diagonal matrix (Hu & Hong, 2007;
Lin, Francis, & Maggiore, 2005). Let us denote the minimum and
maximum singular values as σmin(H ) and σmax(H ).

To ensure output constraints, we introduce a general BLF satis-
fying the following definition.

Definition 1. We call a BLF V (t) = V (γ 2(t), kb) ‘‘γ -type BLF’’ if all
the following conditions hold.

• V → ∞ if and only if γ 2
→ k2b , where kb is a certain fixed

parameter in V , provided that γ 2(0) < k2b .
• V → ∞ if and only if ∂V

∂γ 2 → ∞.
• If γ 2 < k2b , then

∂V
∂γ 2 ≥ C , where C > 0 is a constant.

• limkb→∞V (γ 2(t), kb) =
1
2γ

2(t).

Remark 4. The first item is to ensure the boundedness of γ 2 as
long as the BLF is finite, so it is fundamental. The second item is
to show the boundedness of the BLF by making use of ∂V

∂γ 2 in the
controller design. The third item offers a flexibility of the BLF as
can be seen in the proofs of our main theorems. From the last
item, the newly defined γ -type BLF can be regarded as a general
form of the conventional quadratic Lyapunov function, in the sense
that they are mathematically equivalent when kb → ∞. Two
typical examples are found in the literature: the log-type, V (t) =

k2b
2 log

(
k2b

k2b−γ 2(t)

)
, and the tan-type, V (t) =

k2b
π
tan

(
πγ 2(t)
2k2b

)
. By

direct calculations, one can find that all the items of the definition
are satisfied.

In the following, to simplify notations, the time and state de-
pendence of the system may be omitted whenever no confusion
arises.

3. Main results

In order to make the analysis clear to follow, we first introduce
auxiliary functions for the use of backstepping techniques. The
fictitious errors are defined as follows

γ1,j,k = z1,j,k = εj(x1,j,k − x1,r ) +

N∑
l=1

ajl(x1,j,k − x1,l,k),

γi,j,k = (εj + dj)xi,j,k − σi−1,j,k, i = 2, . . . , n,

(3)

where the stabilizing functions σi,j,k are defined as

σ1,j,k = (εjẋ1,r +

N∑
l=1

aj,lẋ1,l,k) − λ−1
1,j,kµ1,jγ1,j,k,

σi,j,k = σ̇i−1,j,k − λ−1
i,j,kµi,jγi,j,k − λ−1

i,j,kλi−1,j,kγi−1,j,k,

(4)

for i = 2, . . . , n, and

λi,j,k = λi,j,k(t) =
1

γi,j,k

∂Vi,j,k

∂γi,j,k
, Vi,j,k = V (γ 2

i,j,k, kbi,j ). (5)

Here V (·) is the γ -type BLF. kb1,j > 0 and kb2,j > 0 are the
constraints for γ1,j,k and γ2,j,k of the jth agent, ∀k, and kbi,j > 0,
i = 3, . . . , n are virtual bounds on γi,j,k that can be taken arbitrarily
large values, ∀k. µi,j is a positive constant to be designed later.

Based on the above notations, we can now propose the control
protocols for the MAS to achieve uniform state tracking consensus
and prevent output constraints violation.

uj,k =ûj,k −
1

bmin
θ̂ T
j,kξj,ksgn

(
λn,j,kγn,j,kθ̂

T
j,kξj,k

)
−

1
bmin(εj + dj)

σn,j,ksgn
(
λn,j,kγn,j,kσn,j,k

)
−

1
bmin(εj + dj)

ρj,ksgn
(
ρj,kλn,j,kγn,j,k

)
(6)

with iterative updating laws

ûj,k = ûj,k−1 − qjλn,j,kγn,j,k, (7)

θ̂j,k = θ̂j,k−1 + pjλn,j,kγn,j,kξj,k, (8)

where qj > 0 and pj > 0 are design parameters, ∀j = 1, . . . ,N .
sgn(·) is a sign function; that is, sgn(χ ) is equal to +1 for χ > 0,
0 for χ = 0, and −1 for χ < 0, respectively. The initial values of
the iterative update laws are set to be zero, i.e., ûj,0 = 0, θ̂j,0 = 0,
∀j = 1, . . . ,N .

Wehave the following consensus theorem,whose proof is given
in the Appendix.
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Theorem 1. Assume that A1–A3 hold for the multi-agent system (1).
The closed-loop system consisting of model (1) and control algorithms
(6)–(8), can ensure that:

(i) the tracking error ej,k(t) converges to zero uniformly as the
iteration number k goes to infinity, ∀j = 1, . . . ,N;

(ii) the system output, which is x1,j,k or x2,j,k or both, is bounded
by predefined constraints; that is, |x1,j,k| < ks,1 and |x2,j,k| < ks,2 are
guaranteed for all iterations and agents.

Remark 5. If the lumped uncertainty is norm-bounded with an
unknown coefficient ω: |ηj,k| ≤ ωρ(xj,k, t), then an additional
estimation process could be established for this coefficient and
the robust compensation term is appended to the controller based
on the newly estimated parameter similarly to the parameterized
uncertainty part.

Generally speaking, the sign function used in the algorithm (6)
makes itself possibly discontinuous, which may lead to the prob-
lem of existence and uniqueness of solutions. Moreover, it may
also cause chattering that might excite high-frequency unmodeled
dynamics. This motivates us to seek an appropriate smooth ap-
proximation of the sign function for practical applications. In the
following, we take a hyperbolic tangent function as an alternative.
A lemma demonstrating the compensation property of the hyper-
bolic tangent function is given as follows.

Lemma1 (Polycarpous& Ioannouq, 1996). For any ε > 0 and for any
χ ∈ R, we have 0 ≤ |χ | − χ tanh

(
χ

ε

)
≤ δε, where δ is a constant

that satisfies δ = e−(δ+1), i.e., δ = 0.2785.

Now the algorithm (6) becomes the following one

uj,k =ûj,k −
1

bmin
θ̂ T
j,kξj,k tanh

(
λn,j,kγn,j,kθ̂

T
j,kξj,k

ε

)

−
1

bmin(εj + dj)
σn,j,k tanh

(
λn,j,kγn,j,kσn,j,k

ε

)
−

1
bmin(εj + dj)

ρj,k tanh
(

ρj,kλn,j,kγn,j,k

ε

)
. (9)

From Lemma 1, a constant compensation error always exists in
the difference and differential expressions of V 1

j,k(t). Hence it is im-
possible to derive that the difference of Ek(T ) will be negative even
after sufficiently many iterations. Consequently, only a bounded
convergence canbe obtained in the following theoremand its proof
is put in the Appendix.

Theorem 2. Assume that A1– A3 hold for the multi-agent system (1).
The closed-loop system consisting of model (1) and control algorithms
(7)– (9) can ensure that the summation of L2T -norm of fictitious errors∑N

j=1
∑n

i=1

∫ T
0 γ 2

i,j,kdτ converges to the ζ -neighborhood of zerowithin
finite iterations, where ζ = 3TN δ̄ε/µm + ν with T , N, δ̄ being the
iteration length, amount of agents, a constant satisfying δ̄ >

bj,k
bmin

(εj+
dj)δ, ∀j, and ν > 0 being an arbitrary small constant. Then, the
summation of L2T -norm of all tracking errors

∑N
j=1
∑n

i=1

∫ T
0 e2i,j,kdτ

converges to the ζe-neighborhood of zero within finite iterations,
where

ζe ≜
3κ2NT δ̄ε

σ 2
min(H )µm

+
κ2ν

σ 2
min(H )

(10)

with κ being a constant defined later.

From the proof in the Appendix, it is seen that the output
constraint verification is difficult to achieve, because the bounded-
ness of Ek(t) is no longer guaranteed technically. To overcome this

Fig. 1. Communication graph among agents in the network.

problem, we replace the updating laws (7)–(8) with the following
practical dead-zone updating laws

ûj,k =

⎧⎨⎩ûj,k−1 − qjλj,kγj,k, if
∫ T

0
∥zj,k−1∥

2dτ > ς,

ûj,k−1, otherwise,
(11)

θ̂j,k =

⎧⎨⎩θ̂j,k−1 + pjλj,kγj,kξj,k, if
∫ T

0
∥zj,k−1∥

2dτ > ς,

θ̂j,k−1, otherwise,
(12)

where qj > 0, pj > 0, ∀j = 1, . . . ,N are design parameters.
The initial values are set to be zero, i.e., ûj,0 = 0, θ̂j,0 = 0, ∀j =

1, . . . ,N . The prior defined parameter ς denotes the bound of the
convergent neighborhood.

Remark 6. The essential mechanism of (11)–(12) is that learning
processes of ûj,k and θ̂j,k will stop updating whenever the extended
observation error enters the predefined neighborhood of zero, so
that the control system would repeat the same tracking perfor-
mance since then. Consequently, the boundedness of (11)–(12) and
the output constraints condition are fulfilled naturally as long as
the bounded convergence is finished within finite iterations. This
observation is summarized in the following corollary.

Corollary 1. Assume that A1–A3 hold for the multi-agent system (1).
The closed-loop system consisting of model (1) and control algorithms
(9) and (11)–(12) can ensure the following properties.

(i) The extended observation errors converge to the predefined
ς-neighborhood of zero within finite iterations in the sense of
L2T -norm, i.e.,

∫ T
0 ∥zj,k−1∥

2dτ < ς within finite iterations, ∀j. Con-
sequently, the tracking errors would converge to a corresponding
neighborhood of zero in the sense of L2T -norm whose upper bound is
defined as ς/σ 2

min(H ).
(ii) Both ûj,k and θ̂j,k are bounded in the sense of L2T -norm, ∀j =

1, . . . ,N, ∀k.
(iii) The system output, which is x1,j,k or x2,j,k or both, is bounded

by predefined constraint; that is, |x1,j,k| < ks,1 and |x2,j,k| < ks,2 are
guaranteed for all iterations and agents.

The proof is put in the Appendix.

4. Illustrative simulations

To illustrate the applications of the proposed algorithms, con-
sider a group of four agents. The communication topology is
demonstrated in Fig. 1, where vertex 0 represents the desired
reference or virtual leader and the dashed lines stand for the com-
munication links between leader and followers. In this simulation,
agents 1 and 2 can access the information from the leader. The solid
lines stand for the communication links among the four agents.

In the simulation, the agent dynamics is modeled by a one-link
robotic manipulator (Xu & Xu, 2004):[
ẋ1
ẋ2

]
=

[
1 0
0 0

][
x1
x2

]
+

[
0
1

ml2 + I

]
[u − gl cos x1 + η1]
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Fig. 2. Maximal tracking error profiles: (upper) the 1st dimension (lower) the 2nd
dimension.

Fig. 3. Tracking profiles of the first dimension: x1 .

where x1 is the joint angle, x2 is the angular velocity,m is the mass,
l is the length, I is the moment of inertia, and u is the joint input.
ηj,k(t) = h1 sin(ω1t) + h2 sin(ω2t) denotes unknown uncertainty,
where h1 and h2 are random variables subject to uniform distri-
bution in [0, 1], while ω1 and ω2 are random variables subject to
uniform distribution in [0, 10]. The input gain is b = 1/(ml2 + I).
Let m = (3 + 0.1 sin t) kg, l = 1m, I = 0.5 kg m2, and g be the
gravitational acceleration. In order to simulate the heterogenous
MAS, we let θ1 = −gl/(ml2 + I) and θi = θ1 + 0.1(i − 1),
i = 2, 3, 4. Clearly, ξj,k(t) = cos(x1,j,k). The initial states for the
first iteration are set to be x̄1,0 = [1.5 0.88 1.2 0.92]T , x̄2,0 =

5 × [0.5 0.2 0.1 0.4]T .
The tracking reference is given as x1,r = 1 + sin(2π t) +

0.25 sin(4π t) and x2,r = 2π cos(2π t) + π cos(4π t), t ∈ [0, T ]

with T = 1. The BLF chooses the log-type given in Remark 4 with
kb1,j = 10 and kb2,j = 10. The simulations are run for 20 iterations
for each control scheme.

We first simulate the original algorithms (6)–(8). The parame-
ters in the algorithms are selected as bmin = 0.25, qj = 50, and
pj = 1. The parameters in the stabilizing functions are µ1,j =

1 and µ2,j = 5. Define the maximum tracking error (MTE) as

Fig. 4. Tracking profiles of the second dimension: x2 .

Fig. 5. Input profiles for agent 1 using (6)–(8).

maxt |xi,j,k − xi,r | for the ith dimension of the jth agent at the kth
iteration, i = 1,2, j = 1, 2, 3, 4. The MTE profiles for all agents
along the iteration axis are shown in Fig. 2. As one can see, theMTEs
for all agents are reduced a lot during the first several iterations.

The trajectories of all agents at the 1st and 20th iterations are
shown in Figs. 3 and 4 for x1 and x2, respectively. In each figure,
the upper subplot shows the case of the 1st iteration, where all
trajectories do not match the desired reference, whereas the lower
subplot shows the case of the 20th iteration, where all trajectories
coincide with the desired reference.

The input profiles of Agent 1 at the 1st, 10th, and 20th iterations
are shown in Fig. 5. Clearly, the input file at the 20th iteration has
a heavy chattering problem. The input profiles for the other three
agents have similar performance.

This observation motivates us to further consider the approx-
imation case. We simulate the smoothed algorithms (9) and (7)–
(8). The parameter in the tanh function is ε = 10. The other
parameters are the same as the above. The input profiles for the 1st,
10th, and 20th iterations are shown in Fig. 6, where the chattering
problemhas been overcome.Meanwhile, the tracking performance
is similar to the performance shown in Figs. 2–4. Thus, we omit the
figures to save space.
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Fig. 6. Input profiles for agent 1 using (9) and (7)–(8).

5. Conclusions

In this paper, we have addressed the distributed learning con-
sensus problem for a heterogenous high-order nonlinearMASwith
output constraints. We introduce a novel barrier Lyapunov func-
tion to handle the output constraints and propose two consensus
protocols. The first control protocol includes sign functions of
involved quantities for regulating the uncertainty compensation,
and the consensus convergence and constraint satisfaction can
be proved by the BCEF approach. However, the sign functions
in this protocol may cause chattering. Therefore, we proceed to
present the second control protocol, where the sign function is
approximated by a hyperbolic tangent function. In such case, the
bounded consensus is established with a precise estimation of the
upper bound. A practical implementation of the learning processes
is also proposed to guarantee the output constraints. For further
research, it is of great significance to consider the directed and
switching topologies, for which some assumptions in this paper
should be revised.

Appendix

Proof of Theorem 1. The proof consists of five parts. First, we in-
vestigate the decreasing property of the given BCEF in the iteration
domain. By checking the derivative of the BCEF, the finiteness of the
BCEF and the boundedness of involved quantities are shown in Part
II. Next, we prove the convergence of extended observation errors.
In Part IV, the satisfaction of output constraints is verified for all
iterations. Last, the uniform consensus tracking is provided.

Define the following BCEF:

Ek(t) =

N∑
j=1

Ej,k(t) =

N∑
j=1

(V 1
j,k(t) + V 2

j,k(t) + V 3
j,k(t)), (13)

V 1
j,k(t) =

n∑
i=1

Vi,j,k(t) =

n∑
i=1

V (γ 2
i,j,k(t), t), (14)

V 2
j,k(t) =

(εj + dj)
2pj

∫ t

0
(θ̂j,k − θj)T (θ̂j,k − θj)dτ , (15)

V 3
j,k(t) =

(εj + dj)
2qj

∫ t

0
bj,kû2

j,kdτ . (16)

Part I: Difference of Ek(t)
First, we show the decreasing property of Ek(t) along the it-

eration axis at t = T . The difference of Ek(T ) is defined as
∆Ek(T ) ≜ Ek(T ) − Ek−1(T ) =

∑N
j=1∆Ej,k(T ) =

∑N
j=1(∆V 1

j,k(T ) +

∆V 2
j,k(T ) + ∆V 3

j,k(T )). We will examine the three terms
∑N

j=1∆V 1
j,k

(T ),
∑N

j=1∆V 2
j,k(T ),

∑N
j=1∆V 3

j,k(T ) in sequence. Considering∆V 1
j,k(T )

=
∑n

i=1∆Vi,j,k(T ), we will show the case for i = 1,2 and generalize
it for all i. Starting from i = 1, we have

∆V1,j,k(T ) =V (γ 2
1,j,k(0)) − V (γ 2

i,j,k−1(T ))

+

∫ T

0

1
γ1,j,k

∂V1,j,k

∂γ1,j,k
γ1,j,kγ̇1,j,kdτ .

Note that γ1,j,k(0) = z1,j,k(0) =
∑N

l=1ajl(x1,j,k(0) − x1,l,k(0)) +

εj(x1,j,k(0)− x1,r (0)) =
∑N

l=1ajl(x1,j,k−1(T )− x1,l,k−1(T ))+ εj(x1,j,k−1

(T ) − x1,r (T )) = z1,j,k−1(T ) = γ1,j,k−1(T ). Thus, ∆V1,j,k =
∫ T
0 λ1,j,k

γ1,j,kγ̇1,j,kdτ .
By the definition of γ1,j,k, we have γ̇1,j,k = ż1,j,k = (εj+dj)ẋ1,j,k−

(εjẋ1,r+
∑

l∈Nj
ẋ1,l,k) = (εj+dj)x2,j,k−σ1,j,k−λ−1

1,j,kµ1,jγ1,j,k = γ2,j,k−

λ−1
1,j,kµ1,jγ1,j,k. Thus,

∫ T
0 λ1,j,kγ1,j,kγ̇1,j,kdτ =

∫ T
0

(
λ1,j,kγ1,j,kγ2,j,k −

µ1,jγ
2
1,j,k

)
dτ .

Next we proceed to ∆V2,j,k(T ), which is

∆V2,j,k(T ) =V (γ 2
2,j,k(0)) − V (γ 2

2,j,k−1(T ))

+

∫ T

0

1
γ2,j,k

∂V2,j,k

∂γ2,j,k
γ2,j,kγ̇2,j,kdτ .

Since γ2,j,k = (εj + dj)x2,j,k − σ1,j,k = (εj + dj)x2,j,k − (εjx2,r +∑N
l=1ajlx2,l,k) + λ−1

1,j,kµ1,jγ1,j,k, x2,j,k(0) = x2,j,k(T ), ∀j = 1, . . . ,N ,
x2,r (0) = x2,r (T ), γ1,j,k(0) = γ1,j,k(T ), and λ−1

1,j,k is a function of
γ1,j,k, we have γ2,j,k(0) = γ2,j,k(T ). Then, it is clear that ∆V2,j,k =∫ T
0 λ2,j,kγ2,j,kγ̇2,j,kdτ .
For γ̇2,j,k, we can derive that γ̇2,j,k = (εj + dj)ẋ2,j,k − σ̇1,j,k =

γ3,j,k − λ−1
2,j,kµ2,jγ2,j,k − λ−1

2,j,kλ1,j,kγ1,j,k. We have ∆V2,j,k =
∫ T
0 (λ2,j,k

γ2,j,kγ3,j,k − µ2,jγ
2
2,j,k − λ1,j,kγ1,j,kγ2,j,k)dτ . Thus, we come to

∆V1,j,k + ∆V2,j,k =

∫ T

0

(
λ2,j,kγ2,j,kγ3,j,k −

2∑
i=1

µi,jγ
2
i,j,k

)
dτ .

Indeed, we always have

γ̇i,j,k =(εj + dj)ẋi,j,k − σ̇i−1,j,k

=γi+1,j,k − λ−1
i,j,kµi,jγi,j,k − λ−1

i,j,kλi−1,j,kγi−1,j,k,

for i = 2, 3, . . . , n − 1. Therefore, by mathematical induction
principle, we can show that

n−1∑
i=1

∆Vi,j,k(T ) =

∫ T

0

(
λn−1,j,kγn−1,j,kγn,j,k −

n−1∑
i=1

µi,jγ
2
i,j,k

)
dτ . (17)

For the last term of ∆V 1
j,k(T ), i.e., ∆Vn,j,k(T ), we have

∆Vn,j,k(T ) =

∫ T

0
λn,j,kγn,j,kγ̇n,j,kdτ , (18)

where γ̇n,j,k = (εj + dj)ẋn,j,k − σ̇n−1,j,k = −(εj + dj)θ̃ T
j,kξj,k +

(εj + dj)θ̂ T
j,kξj,k + (εj + dj)bj,kuj,k + ηj,k − λ−1

n,j,kµn,jγn,j,k −

λ−1
n,j,kλn−1,j,kγn−1,j,k − σn,j,k with θ̃j,k ≜ θ̂j,k − θj. Substi-

tuting (6) into this equation and noticing the basic inequal-
ity mk ≤

bj,k
bmin

mksgn(mk), where mk denotes λn,j,kγn,j,kθ̂
T
j,kξj,k,
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−λn,j,kγn,j,kσn,j,k, and λn,j,kγn,j,kηj,k, respectively, we have

∆Vn,j,k(T ) ≤

∫ T

0

[
− λn,j,kγn,j,k(εj + dj)θ̃ T

j,kξj,k

+ λn,j,kγn,j,k(εj + dj)bj,kûj,k

− µn,jγ
2
n,j,k − λn−1,j,kγn−1,j,kγn,j,k

]
dτ , (19)

which, combining with (17), further yields that

∆V 1
j,k(T ) =

∫ T

0

[
−λn,j,kγn,j,k(εj + dj)θ̃ T

j,kξj,k

+ λn,j,kγn,j,k(εj + dj)bj,kûj,k −

n∑
i=1

µi,jγ
2
i,j,k

]
dτ . (20)

Next, we proceed to the term V 2
j,k(T ).

∆V 2
j,k(T ) =

εj + dj
2pj

∫ T

0
(θ̂j,k − θ̂j,k−1)T (θ̂j,k + θ̂j,k−1 − 2θj)dτ

≤
εj + dj

pj

∫ T

0
(θ̂j,k − θj)T (θ̂j,k − θ̂j,k−1)dτ

=(εj + dj)
∫ T

0
λn,j,kγn,j,kθ̃

T
j,kξj,kdτ , (21)

where (8) is used for the last equality.
Then, for the last term ∆V 3

j,k(T ), we have

∆V 3
j,k(T ) =

εj + dj
2qj

bj,k

[∫ T

0
û2
j,kdτ −

∫ T

0
û2
j,k−1dτ

]
≤

εj + dj
qj

bj,k

∫ T

0
ûj,k
(
ûj,k − ûj,k−1

)
dτ

= − (εj + dj)bj,k

∫ T

0
λn,j,kγn,j,kûj,kdτ , (22)

where (7) is used in the last equality.
Consequently, combining (20)–(22) results in ∆Ej,k(T ) ≤

−
∫ T
0

(∑n
i=1µi,jγ

2
i,j,k

)
dτ , which further yields

∆Ek(T ) =

N∑
j=1

∆Ej,k(T ) ≤ −

N∑
j=1

∫ T

0

( n∑
i=1

µi,jγ
2
i,j,k

)
dτ . (23)

Thus the decreasing property of BCEF in iteration domain at t = T
is obtained.

Part II. Finiteness of Ek(t) and involved quantities
The finiteness of Ek(t) will be proved for the first iteration and

then generalized to the following iterations. To this end, we first
give the expressions of Ėk(t) and then show the finiteness of E1(t).
For any k, we have Ėk(t) =

∑N
j=1Ėj,k(t) =

∑N
j=1(V̇

1
j,k(t) + V̇ 2

j,k(t) +

V̇ 3
j,k(t)).
Similar to the derivations in Part I, for V̇ 1

j,k(t), we have

V̇ 1
j,k(t) ≤ − λn,j,kγn,j,k(εj + dj)θ̃ T

j,kξj,k

+ λn,j,kγn,j,k(εj + dj)bj,kûj,k −

n∑
i=1

µi,jγ
2
i,j,k. (24)

For V̇ 2
j,k(t), we have

2pj
εj + dj

V̇ 2
j,k(t) = (θ̂j,k − θj)T (θ̂j,k − θj)

≤θ T
j θj − 2θ T

j θ̂j,k−1 + θ̂ T
j,k−1θ̂j,k−1

− 2pjλn,j,kγn,j,kθ
T
j ξj,k + 2pjθ̂ T

j,kλn,j,kγn,j,kξj,k

=(θ̂j,k−1 − θj)T (θ̂j,k−1 − θj) + 2pjθ̃ T
j,kλn,j,kγn,j,kξj,k.

Further, for V̇ 3
j,k(t), we have

2qj
(εj + dj)bj,k

V̇ 3
j,k(t) = û2

j,k = (ûj,k−1 − qjλn,j,kγn,j,k)2

≤û2
j,k−1 − 2qjûj,kλn,j,kγn,j,k.

Combining the above three inequalities of V̇ 1
j,k, V̇

2
j,k, and V̇ 3

j,k together
leads to

Ėj,k ≤ −

n∑
i=1

µi,jγ
2
i,j,k +

εj + dj
2qj

bj,kû2
j,k−1

+
εj + dj
2pj

(θ̂j,k−1 − θj)T (θ̂j,k−1 − θj). (25)

It can be derived from (23) that the finiteness or boundedness
of Ek(T ) is ensured for each iteration provided that E1(T ) is finite.
Thus, we now verify the finiteness of E1(t).

It is found from (25) Ėj,1 ≤ −
∑n

i=1µi,jγ
2
i,j,1 +

εj+dj
2pj

θ T
j θj, because

the initial values of (7) and (8) are set to be zero, i.e., ûj,0 = 0
and θ̂j,0 = 0. Clearly, Ėj,1(t) is bounded over [0, T ], ∀j. Hence, the
boundedness of Ej,1(t) over [0, T ] is also obtained, ∀j. In particular,
Ej,1(T ) is bounded. Noticing E1(T ) =

∑N
j=1Ej,1(T ), we have that

E1(T ) is bounded.
Now, we are in the position of checking the boundedness prop-

erty of Ek(t) for k ≥ 2, the parameter estimation θ̂j,k and the control
signal ûj,k. According to the definition of Ek(t) and the boundedness
of Ek(T ), the boundedness of V 2

j,k(T ) and V 3
j,k(T ) are guaranteed for

all iterations. That is, for any k ∈ Z+, there exist constants M1 > 0
andM2 > 0 such that

∫ t
0 (θ̂j,k−θj)T (θ̂j,k−θj)dτ ≤

∫ T
0 (θ̂j,k−θj)T (θ̂j,k−

θj)dτ ≤ M1 < ∞,
∫ t
0 bj,kû2

j,kdτ ≤
∫ T
0 bj,kû2

j,kdτ ≤ M2 < ∞. Hence,
the boundedness of θ̂j,k and ûj,k is guaranteed.

Recalling the differential of Ej,k in (25), we have

Ej,k(t) =Ej,k(0) +

∫ t

0

(
−

n∑
i=1

µi,jγ
2
i,j,k +

εj + dj
2qj

bj,kû2
j,k−1

+
εj + dj
2pj

(θ̂j,k−1 − θj)T (θ̂j,k−1 − θj)
)
dτ

≤Ej,k(0) +
εj + dj
2pj

M1 +
εj + dj
2qj

M2.

Meanwhile, Ej,k(0) = Ej,k−1(T ) is also bounded by the alignment
condition. Therefore, it is evident that Ej,k(t) is bounded over [0, T ].
And so is the amount Ek(t).

Part III. Convergence of extended observation errors
We recall that ∆Ek(T ) ≤ −

∑N
j=1

∫ T
0

∑n
i=1µi,jγ

2
i,j,kdτ . Thus,

Ek(T ) ≤ E1(T )−
∑k

l=2
∑N

j=1

∫ T
0

∑n
i=1µi,jγ

2
i,j,kdτ . As Ek(T ) is positive

and E1(T ) is bounded,
∑k

l=2
∑N

j=1

∫ T
0

∑n
i=1µi,jγ

2
i,j,kdτ is bounded

∀k. Then, γi,j,k converges to zero asymptotically in the sense of
L2T -norm, i.e., limk→∞

∫ T
0 γ 2

i,j,kdτ = 0, ∀i, j. Moreover, as
γ1,j,k = z1,j,k, we have actually obtained the convergence
of extended observation errors z̄1,k in the sense of L2T -norm,
i.e., limk→∞

∫ T
0 ∥z̄1,k∥2

2dτ = 0. Further, consider the convergence of
the second dimension of extended observation error z̄2,k. Because
γ1,j,k → 0, we have σ1,j,k → εjẋ1,r +

∑N
l=1ajlẋ1,l,k = εjx2,r +∑N

l=1ajlx2,l,k and then γ2,j,k → z2,j,k in the sense of L2T -norm. As
a result, we have limk→∞

∫ T
0 ∥z̄2,k∥2

2dτ = 0. By mathematical
induction principle, one can show limk→∞

∫ T
0 ∥z̄i,k∥2

2dτ = 0, i =

3, . . . , n similarly.
Part IV. Constraints verification on states
In the last part, we have shown that Ek(t) is bounded over [0, T ]

for all iterations. So it is guaranteed that Vi,j,k(t), i.e., V (γ 2
i,j,k(t), t),

is bounded over [0, T ] for all dimensions, all iterations and all
agents. According to the definition of the so-called γ -type BLF, we



D. Shen, J.-X. Xu / Automatica 97 (2018) 64–72 71

can conclude that |γi,j,k| < kbi,j holds over [0, T ], ∀i = 1, . . . , n,
∀j = 1, . . . ,N , ∀k ∈ Z+. Noticing that γ1,j,k = z1,j,k, we have
|z1,j,k| < kb1,j , ∀j = 1, . . . ,N . Denote k1,m ≜ maxjkb1,j . Clearly,
∥z̄1,k∥ ≤ Nk1,m, ∀k ∈ Z+.

On the other hand, the relationship between z̄1,k and ē1,k in (2)
leads to ē1,k = H −1z̄1,k. This further yields ∥ē1,k∥ ≤ σmax(H −1)
∥z̄1,k∥ ≤

1
σmin(H )Nk1,m for all k ∈ Z+.

For the constraints imposed on x1,j,k, |x1,j,k| < ks,1, we can set
k1,m = (ks,1 −|x1,r |)σmin(H )/N . Under this setting, the tracking er-
ror will be bounded as follows: |e1,j,k| ≤ ∥ē1,k∥ ≤

1
σmin(H )Nk1,m ≤

1
σmin(H )N(ks,1 − |x1,r |)

σmin(H )
N = ks,1 − |x1,r | In other words,

|x1,j,k − x1,r | = |e1,j,k| ≤ ks,1 − |x1,r |, and therefore |x1,j,k| ≤

ks,1 − |x1,r | + |x1,r | = ks,1. The constraint of the first-dimension
of the state is satisfied.

Now, for the constraint on x2,j,k, we can define γ̄2,k =

[γ2,1,k, . . . , γ2,N,k]
T and ϕ = [

µ1,1γ1,1,k
λ1,1,k

, . . . ,
µ1,Nγ1,N,k

λ1,N,k
]
T . Then, we

have γ̄2,k = H ē2,k + ϕ, or equivalently, ∥ē2,k∥ ≤
1

σmin(H ) (∥γ̄2,k∥ +

∥ϕ∥). Therefore, to ensure the constraint, it suffices to satisfy
1

σmin(H ) (∥γ̄2,k∥ + ∥ϕ∥) ≤ ks,2 − |x2,r |. This is valid if k2,m ≤

1
N [σmin(H )(ks,2 −|x2,r |)−∥ϕ∥] is satisfied, where k2,m ≜ maxjkb2,j .

In addition, the unknown function ξj,k is bounded as its ar-
gument xi,j,k has been shown to be bounded. Incorporating with
the result that γi,j,k and λi,j,k are bounded, and noting (6), we can
conclude that the input profile uj,k is also bounded.

Part V. Uniformly consensus tracking
In the last part, it is shown that |γi,j,k| is bounded by kbi,j for all

iterations. Recall that γi,j,k also converges to zero in the sense of L2T -
norm, as is shown in Part IV. Then we can conclude that γi,j,k → 0
uniformly as k → ∞, ∀i, j. In other words, zi,j,k → 0 uniformly as
k → ∞, ∀i, j. Then z̄i,k → 0. Meanwhile, z̄i,k = H ēi,k and H is an
invertiblematrix. Thus, ēi,k → 0 uniformly as k → ∞. In short, the
uniform consensus tracking is proved. The proof is completed. □

Proof of Theorem 2. We still apply the BCEF given in (13)–(16)
and check the difference of Ek(T ) first.

Part I. Difference of Ek(t)
The steps from beginning to (18) of proof of Theorem 1 are

still valid, and thus are not copied here. Now substitute (9) into
the expression of γ̇n,j,k. Using Lemma 1, we can substitute the
terms λn,j,kγn,j,kθ̂

T
j,kξj,k, λn,j,kγn,j,kσn,j,k, and λn,j,kγn,j,kηj,k as χ and

then we obtain the estimate of the difference terms (similar to the
derivations for (19)). Let δ̄ be a constant satisfying δ̄ >

bj,k
bmin

(εj+dj)δ.
Then, we have

n∑
i=1

∆Vi,j,k(T ) =

∫ T

0

[
− λn,j,kγn,j,k(εj + dj)θ̃ T

j,kξj,k

+ λn,j,kγn,j,k(εj + dj)bj,kûj,k

]
dτ

−

∫ T

0

( n∑
i=1

µi,jγ
2
i,j,k

)
dτ + 3T δ̄ε. (26)

Combining with (21) and (22) we further have ∆Ej,k(T ) ≤

−
∫ T
0

(∑n
i=1µi,jγ

2
i,j,k

)
dτ + 3T δ̄ε and

∆Ek(T ) ≤ −

N∑
j=1

∫ T

0

( n∑
i=1

µi,jγ
2
i,j,k

)
dτ + 3NT δ̄ε. (27)

Part II. Bounded convergence analysis
In the last part, the difference of Ek(T ) is obtained, i.e.,∆Ek(T ) ≤

−µm
∫ T
0

(∑N
j=1
∑n

i=1γ
2
i,j,k

)
dτ +3NT δ̄ε, whereµm ≜ mini,jµi,j. Then

finite summation of ∆Ek(T ) from the first iteration leads to

Ek(T ) = E1(T ) +

k∑
l=1

∆Ek(T )

≤E1(T ) − µm

k∑
l=1

[∫ T

0

( N∑
j=1

n∑
i=1

γ 2
i,j,k

)
dτ −

3NT δ̄ε

µm

]
. (28)

Due to the positiveness of Ek(T ), we can show the boundedness
and convergence of γi,j,k from (28).

(a) If
∫ T
0

(∑N
j=1
∑n

i=1γ
2
i,j,k

)
dτ goes to infinity at the kth iteration,

then the right hand side (RHS) of (28) will diverge to infinity owing
to the finiteness of 3NT δ̄ε/µm. This contradicts the positiveness of
Ek(T ).

(b) For any given ν > 0, there is a finite integer k0 > 0 such that∫ T
0

(∑N
j=1
∑n

i=1γ
2
i,j,k

)
dτ < 3NT δ̄ε/µm + ν for k ≥ k0. Otherwise,∫ T

0

(∑N
j=1
∑n

i=1γ
2
i,j,k

)
dτ ≥ 3NT δ̄ε/µm + ν holds for k → ∞. Then

the RHS of (28) will approach −∞, which again contradicts the
positiveness of Ek(T ).

Hence, the summation of L2T -norm of fictitious errors will enter
the specified bound 3NT δ̄ε/µm + ν within finite iterations.

Next we transfer the above convergence to the extended ob-
servation error and tracking error. To this end, denote γj,k ≜
[γ1,j,k, . . . , γn,j,k]

T . From the definition of fictitious errors and sta-
bilizing functions, we have zj,k = Γj,kγj,k, where Γj,k is defined as

Γj,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

−λ−1
1,j,kµ1,j 1 0 · · · 0

−λ−1
2,j,kλ1,j,k −λ−1

2,j,kµ2,j 1 · · · 0
...

...
...

. . .
...

0 · · · · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

According to Definition 1, it is seen λ−1
i,j,k is bounded. Therefore,

any matrix norm of Γj,k is bounded for any j and k. For clarity, we
assume κ > σmax(Γj,k), ∀j, k. Then we have

∑n
i=1

∫ T
0 z2i,j,kdτ =∫ T

0 ∥zj,k∥2dτ ≤ κ2
∫ T
0 ∥γj,k∥

2dτ . It further leads to
∑N

j=1
∑n

i=1∫ T
0 z2i,j,kdτ ≤ κ2∑N

j=1
∑n

i=1

∫ T
0 γ 2

i,j,kdτ . Consequently, the summa-
tion of L2T -norm of extended observation errors would converge to
the ζz-neighborhood of zero within finite iterations, where ζz =
3κ2NT δ̄ε

µm
+ κ2ν.

From (2), we have ēi,k = H −1z̄i,k, ∀1 ≤ i ≤ n, k. This
hints that

∫ T
0 ∥ēi,k∥2dτ ≤

1
σ2
min(H )

∫ T
0 ∥z̄i,k∥2dτ , which further

yields
∑N

j=1
∑n

i=1

∫ T
0 e2i,j,kdτ ≤

1
σ2
min(H )

∑N
j=1
∑n

i=1

∫ T
0 z2i,j,kdτ . Then,

the summation of L2T -norm of tracking errors converges to the
ζe-neighborhood of zero within finite iterations, where ζe =

3κ2NT δ̄ε

σ2
min(H )µm

+
κ2ν

σ2
min(H )

. The proof is completed. □

Proof of Corollary 1. First, similar to the proof of Theorem 2, we
can select ε and ν sufficiently small such that ζz < ς for any
prior given ς . Thus, the finite iteration convergence to a predefined
neighborhood of zero holds by the proof of Theorem 2. Moreover,
once the tracking error enters the predefined neighborhood, the
learning processes (11)–(12) stop updating and the boundedness
is therefore guaranteed evidently.

Next, let us verify the output constraint satisfaction. Note that
the tracking errorwould enter a neighborhood of zerowithin finite
iterations and the neighborhood magnitude can be predefined.
Therefore, for a given neighborhood bound, a finite integer exists,
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say k1, such that the tracking error enters the given neighborhood
for k ≥ k1. It is evident that Ek(T ) is bounded, ∀k < k1. Thus V 1

j,k
is also bounded, ∀k < k1, whence the constraints can be verified
similarly to the proof of Theorem 1. When k ≥ k1, the tracking
error will enter a predefined neighborhood. Then, the learning
processes (11)–(12) would stop updating and the control system
would repeat its tracking performance. Consequently, the output
constraints are still valid. This completes the proof. □
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